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ABSTRACT

A storage side channel occurs when an adversary accesses
data objects influenced by another, victim computation and
infers information about the victim that it is not permitted
to learn directly. We bring advances in privacy for statisti-
cal databases to bear on storage side-channel defense, and
specifically demonstrate the feasibility of applying differen-
tially private mechanisms to mitigate storage side channels
in procfs, a pseudo file system broadly used in Linux and
Android kernels. Using a principled design with quantifi-
able security, our approach injects noise into kernel data-
structure values that are used to generate procfs contents,
but also reestablishes invariants on these noised values so
as to not violate assumptions on which procfs or its clients
depend. We show that our modifications to procfs can be
configured to mitigate known storage side channels while
preserving its utility for monitoring and diagnosis.

Categories and Subject Descriptors

D.4.6 [OPERATING SYSTEMS]: Security and Protec-
tion—Information flow controls

General Terms

Security

Keywords

Side channels; differential privacy

1. INTRODUCTION
Side-channel attacks aim at disclosing data in computer

systems by exfiltrating sensitive information through inter-
faces that are not designed for this purpose. In recent years,
the scope of side-channel attacks has been extended beyond
their traditional use to attack cryptographic keys, and tech-
niques utilized in side-channel analysis have also increased
in variety and sophistication.
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In this paper, we examine one particular type of side-
channel attack vector, which we call storage side channels.
Storage side channels occur when an adversary accesses data
objects associated with a victim computation and makes in-
ferences about the victim based on the contents of the data
objects themselves or their metadata. As we use the term
here, storage side channels form a subclass of storage covert
channels [35] that gleans information from an unwitting vic-
tim, versus receiving information inconspicuously from an
accomplice. Storage side (and covert) channels differ from
legitimate communication channels since the data value or
the metadata exploited by the side channel is not considered
sensitive by itself; yet, it still leaks information that may be
exploited to infer victim secrets.

A generic approach to mitigate storage side (and covert)
channels is to reduce the accuracy of the data or its meta-
data being reported by adding random noise to disturb side-
channel observations [35]. A challenge in this approach is to
develop principled mechanisms to perturb the side channels
with provable security guarantees, and to do so while pre-
serving the utility of the data and metadata in the system.

In this paper, we present a novel approach to doing so by
leveraging privacy concepts in storage side-channel defense.
By limiting data reporting to conform to differential privacy
and generalizations thereof, we show how to introduce noise
into the data reporting so as to bound information leakage
mathematically. The difficulties in doing so, however, stem
from the challenges in (i) modeling these storage channels
as statistical databases, where differential privacy was pre-
viously applied; (ii) designing privacy mechanisms to add
noise so that side channels are provably mitigated; and (iii)
designing these mechanisms so as to minimize the loss of util-
ity of the released data. We will discuss methods to address
these challenges in the remaining sections of this paper. In
theory, these methods can be applied to mitigating a variety
of storage side channels. However, in this paper we illus-
trate the idea by focusing only on storage channels based on
procfs, a file-system interface for reporting resource usage
information on Linux and Android systems.

Toward this end, we propose a modified procfs, dubbed
dpprocfs, that provides guarantees about the inferences pos-
sible from values reported through the procfs interfaces. In
doing so, dpprocfs defends against a variety of storage side
channels recently exploited in procfs on both Linux and
Android (see Sec. 3.1 for a summary of these attacks). Our
work builds on the works of Dwork et al. [20, 21] and Chan et
al. [12], which consider differential privacy under continuous
observations, but we are forced to extend from this starting



point in multiple ways. First, differential privacy itself is
not a good match for side-channel mitigation in the procfs
context; rather, we turn to a recent generalization called
d-privacy [13] that is parameterized by a distance metric
d. By defining a suitable distance metric d and expressing
side-channel mitigation goals in terms of the distance be-
tween two series of procfs observations, we prove that the
differentially private mechanism of Chan et al. [12] general-
izes to mitigate storage side channels. Second, however, the
naive application of this mechanism to noise procfs out-
puts would risk correctness of applications that depend on
invariants that procfs outputs satisfy in practice. To re-
tain the utility of procfs, dpprocfs therefore extracts and
reestablishes invariants on the noised outputs so as to assist
applications that depend on them.

We implemented dpprocfs for Linux as a suite that con-
sists of an extension of the Linux kernel, a userspace daemon
process, and a software tool that is used for generating in-
variants on the values of kernel data structures offline. The
kernel extension alters the functionality of procfs to enforce
d-privacy on the exported data values while preserving the
standard procfs interfaces. The userspace daemon inter-
acts with the kernel extension to reestablish the invariants
procfs satisfies. We will elaborate on our implementation
choices in later sections.

We evaluate our prototype for both its security and utility.
For security, we demonstrate configurations that effectively
mitigate existing procfs side-channel attacks from the liter-
ature. We specifically demonstrate preventing two attacks,
one that uses procfs data to measure keystroke behavior as
a means to recover a typed input, and another that mon-
itors the resource usage of a browser process to determine
the website it is accessing [25]. We evaluate the utility of
dpprocfs by measuring the relative error of protected fields
and the similarity of the resource-use rankings of processes
by the popular top utility to those rankings without noise.

In summary, our contributions are as follows:

• We bring advances in privacy for statistical databases
to bear on storage side-channel defense. Specifically, we
show that an existing mechanism due to Chan et al. [12]
for enforcing differential privacy under continuous binary
data release extends to implement d-privacy for a dis-
tance metric d∗ that can quantify storage side channels
in procfs. We define this distance metric d∗, argue its
utility for capturing storage side channels, and prove that
the Chan et al. mechanism implements d∗-privacy.

• We identify a challenge in inserting noise into procfs
outputs, namely the violation of invariants that procfs
clients (and procfs code itself) might depend. Drawing
from previous research in invariant identification, we de-
velop a tool for extracting invariants and imposing them
upon noised values prior to returning procfs outputs. In
doing so, we ensure that procfs outputs are consistent,
even while being noised to interfere with side channels.

• We develop a working implementation of dpprocfs, our
variant of procfs that implements storage side-channel
defense, and evaluate both the protection it offers against
previously published attacks and the utility it offers for
monitoring and diagnosis. Our results illustrate that
side-channel defense can be accomplished while still main-
taining the utility of procfs for its intended purposes.

The remainder of this paper is organized as follows. Sec. 2
summarizes related work. Sec. 3 provides an overview of
storage side channel attacks via procfs, and the theoretical
basis of d-privacy. Sec. 4 presents our design of dpprocfs,
which is followed by details of its implementation in Sec. 5.
We evaluate both the security and utility of dpprocfs in
Sec. 6 and discuss remaining challenges in Sec. 7. We con-
clude the paper in Sec. 8. The proofs of propositions stated
in this paper can be found in App. A.

2. RELATED WORK
Relevant to our work is privacy in the context of statistical

databases. Statistical database systems allow users to query
aggregate statistics of subsets of entities in the database.
Privacy concerns arise when a database client learns infor-
mation about individuals represented in the database through
one or multiple queries to the database [4]. This concern has
driven decades of innovation in stronger privacy definitions
in this context and algorithms to achieve them (e.g., [4, 38,
41, 29, 18, 27, 36, 8]). Of particular interest here is differen-
tial privacy and extensions thereof; please see the works due
to Dwork [19] and Fung et al. [23] that survey advances in
differential privacy and compare it to other privacy models,
respectively.

Prior to our work, differential privacy has been imple-
mented in practical systems, e.g., to support privacy for
data accessed through SQL-like queries [32] or MapReduce
computations [37]. The security scenarios we consider, how-
ever, differ from the statistical database privacy model in
two dimensions: First, storage side channels revolve around
information leakage due to an attacker continuously mon-
itoring the same data as it changes over time. Statistical
databases are typically static, however. Second, database
indistinguishability is not well defined under our security
model, and hence we need to adapt the definition of differ-
ential privacy for our intended purposes.

We build our work upon two lines of research in the lit-
erature. The first line is concerned with differential privacy
with continuous data release [20, 21, 12]. In these works,
the continuous data release takes the form of a sequence of
binary values, and only sequences that differ in a single bi-
nary value are rendered indistinguishable to the attacker.
In the model we consider, in contrast, the continuous data
release can be characterized as a sequence of integers, and
even sequences that differ in multiple values might need to
be rendered indistinguishable. The second line of research
generalizes the definition of differential privacy for statistical
databases. In particular, Chatzikokolakis et al. [13] broad-
ened the definition of differential privacy by parameterizing
the definition with a distance metric d, and requiring that
the degree of indistinguishability of two databases be a func-
tion of their distance. (The original definition of differential
privacy can be viewed as a special case for Hamming dis-
tance [13].) We build from this approach, defining a metric
d that applies to storage side channels and implementing
this defense in a working system.

While several prior works also extend the definition of dif-
ferential privacy to settings that are not statistical databases
(e.g., geo-location services [5, 9] and smart metering [3, 2, 17,
26, 31, 42, 7]), our work is the first to our knowledge to ap-
ply differential privacy concepts in operating system security
and side-channel defense. Moreover, the domain of storage
side-channel defense introduces important differences that



require innovation. In particular, since the values that our
system must perturb to interfere with side channels are ones
that are used by other software, it is important that our
modifications do not violate invariants on which that soft-
ware depends. To our knowledge, this aspect distinguishes
the problem we address from work in geo-location and smart
metering and drives us to a novel design as discussed in the
balance of the paper.

3. BACKGROUND

3.1 Side Channel Attacks via PROCFS
procfs is a pseudo file system implemented in Linux, An-

droid, and a few other UNIX-like operating systems to fa-
cilitate userspace applications’ accesses to kernel-space in-
formation. Two types of information are typically shared
through procfs: per-process information and system-wide
information. Per-process information reveals configuration
and state information about a process, including path of the
executable, environment variables, size of virtual and phys-
ical memory, CPU and network usage, and so on. While
some of the information should only be consumed by the
process itself, other information, especially statistics about
resource usage, is required for performance monitoring and
diagnosis. For instance, in Linux, top, ps, iostat, netstat,
pidstat, and others rely on procfs to function. In Android,
procfs is used for apps to monitor the resource usage, e.g.,
transferred network data, of other apps.

This useful facility has been exploited to conduct side-
channel attacks by several prior works. Particularly of in-
terest in this paper are the attacks exploiting publicly avail-
able per-process information to infer secrets of the targeted
process; see Table 1 for examples. The techniques under-
lying these attacks are similar. Jana et al. [25] introduced
an attack that, by reading from a file in procfs, /proc/
<pid>/statm, and learning the data resident size (drs) of
a Chrome browser, enables a malicious co-located applica-
tion to infer the website it is visiting. The feature used to
differentiate multiple websites being browsed is the snap-
shot of the application’s memory footprint. Zhou et al. [44]
explored ways in Android to infer a victim app’s activity
by monitoring its network communications. Specifically,
by sampling the files /proc/uid_stat/<uid>/tcp_rcv and
/proc/uid_stat/<uid>/tcp_snd, an adversary is able to
learn the packet sizes sent and received by the victim app
with high accuracy. Chen et al. [14] extracted the victim
app’s CPU utilization time, memory usage, and network us-
age from various procfs files to classify the application’s
behaviors. Lin et al. [28] also used utime to recognize a
user’s operation of the software keyboard on Android.

3.2 d-Privacy
In this paper we leverage a generalization of differential

privacy due to Chatzikokolakis et al. [13] called d-privacy,
which we summarize here briefly. (Our summary is not of
the most general form of d-privacy, however.) A metric d on
a set X is a function d : X 2 → [0,∞) satisfying d(x, x) = 0,
d(x, x′) = d(x′, x), and d(x, x′′) ≤ d(x, x′)+ d(x′, x′′) for all
x, x′, x′′ ∈ X . A randomized algorithm A : X → Z satisfies
(d, ϵ)-privacy if

P (A(x) ∈ Z) ≤ exp(ϵ× d(x, x′))× P
(

A(x′) ∈ Z
)

for all Z ⊆ Z.

We leverage the following composition property of d-privacy:

Proposition 1. If A : X → Z is (d, ϵ)-private and A′ :
X → Z ′ is (d, ϵ′)-private, then A′′ : X 2 → Z × Z ′ defined
by A′′(x, x′) = (A(x),A′(x′)) satisfies

P
(

A′′(x, x′) ∈ Z × Z′) ≤ exp(ϵ × d(x, x′′) + ϵ′ × d(x′, x′′′))

× P
(

A′′(x′′, x′′′) ∈ Z × Z′)

for any Z ⊆ Z, any Z′ ⊆ Z ′, and any x, x′, x′′, x′′′ ∈ X .

Let Z and R denote the integers and reals, respectively.
In the case X = Z

n, a metric that will be of interest for our
purposes is L1 distance, defined by

dL1(x, x
′) =

n
∑

i=1

|x[i]− x′[i] |

where x = ⟨x[1] , . . . , x[n]⟩.

Proposition 2. Let A : Zn → R
n be the algorithm that

returns A(x) = ⟨x[1] + r1, . . . , x[n] + rn⟩, where each ri
$
←

Lap
(

1
ϵ

)

. Then, for any x, x′ ∈ Z
n and Z ⊆ R

n,

P (A(x) ∈ Z) ≤ exp(ϵ× dL1(x, x
′))× P

(

A(x′) ∈ Z
)

4. DESIGN OF A d-PRIVATE PROCFS
In an effort to suppress information leakages in procfs

such as those described in Sec. 3.1, we devise a new procfs-
like file system, called dpprocfs, that leverages differential
privacy principles. In this section, we describe how we apply
these principles in the design of dpprocfs.

4.1 Threat Model
This paper considers side-channel attacks exploiting statis-

tics values exported by procfs from co-located applications
running within the same OS. In particular, we consider the
default settings of procfs, which do not restrict accesses to
a process’ private directories in procfs by other processes.
Such settings are very typical in traditional desktop envi-
ronments or shared server hosting environments running all
kinds of Linux distributions, and mobile devices running An-
droid. We assume the OS kernel and the root user of the
system are not compromised. Accordingly, security attacks
due to software vulnerabilities are beyond the scope of con-
sideration.

4.2 Design Overview
When a procfs file is open and read, the data read are cre-

ated on-the-fly by the Linux kernel. To create the file data,
the kernel draws information from several data structures.
Examples include the task_struct structure that describes
a process or task in the system, and the mm_struct structure
that describes the virtual memory of a process.

One option to interfere with adversary inferences about
victim processes using values obtained from procfs would
be to add noise to those values directly, just before out-
putting them. Unfortunately, there are numerous outputs
from procfs with complex relationships among them, and
so we determined that adding noise to the underlying kernel
data-structure field values used to calculate procfs outputs
would be a more manageable design choice. In particular,
there are fewer such fields, and while there remain relation-
ships among them (more on that below), they are reduced
in number and complexity.



Reference Description procfs files used Underlying kernel data-structure fields

Jana et al. [25] Memory footprint and
context switches of a
browser process leak
website it visits

/proc/<pid>/statm
/proc/<pid>/status
/proc/<pid>/schedstat

mm_struct.total_vm
mm_struct.shared_vm
task_struct.nvcsw
task_struct.nivcsw

Zhou et al. [44] Sizes of network pack-
ets to/from Android
app leaks its activity

/proc/uid_stat/<uid>/tcp_rcv
/proc/uid_stat/<uid>/tcp_snd

uid_stat.tcp_rcv
uid_stat.tcp_snd

Chen et al. [14] Android foreground
activity identified
using shared memory,
CPU utilization time
and network activity

/proc/<pid>/statm
/proc/<pid>/stat
/proc/uid_stat/<uid>/tcp_rcv
/proc/uid_stat/<uid>/tcp_snd

mm_struct.shared_vm
mm_struct.rss_stat.count[MM_FILEPAGES]
mm_struct.rss_stat.count[MM_ANONPAGES]
uid_stat.tcp_rcv
uid_stat.tcp_snd
task_struct.utime

Lin et al. [28] Use of software key-
board detected using
CPU utilization time

/proc/<pid>/stat task_struct.utime

Table 1: Selected attacks leveraging storage side channels in the procfs file system

So, in the design of dpprocfs, we treat updates to the
relevant per-process kernel data structures as constituting
a “database” x that represents the evolution of the process
since its inception. That is, consider a conceptual database
x to which a record is added each time one or more of a pro-
cess’ kernel data-structure fields changes. The columns of
x correspond to the numeric fields of the per-process kernel
data structures consulted by procfs. So, for example, the
mm_struct.total_vm field, which indicates the total num-
ber of virtual memory pages of a process, is represented by
a column in x. As the process executes, a new record is ap-
pended to x anytime the value in one of these fields changes.
Each time a procfs file is read, the values returned are as-
sembled from what is, in effect, the most recently added row
of the database x. We stress, however, that this database is
conceptual only, and does not actually exist in dpprocfs.

We design an algorithm to implement d-privacy per col-
umn of x (i.e., per data-structure field), relying on Prop. 1 to
bound the information leaked from multiple columns simul-
taneously. Since each column of the database x corresponds
to a specific field in a kernel data structure, our mechanism
is applied each time a field in a protected data structure is
read by procfs code. For the remainder of this paper, we
adjust our notation so that the database x represents a sin-
gle column corresponding to that data-structure field. We
refer to x[i] as the value of the last element of that column
(i.e., the field in the kernel data structure corresponding to
the column) when the i-th access occurs (i.e., i = 1 is the
first access to the data-structure field).

Even to limit leakage from a single column, it is necessary
to decide on a distance metric d for which to implement
d-privacy. While we might not know exactly how the ad-
versary uses the procfs outputs to infer information about
a victim process, we can glean guidance from known at-
tacks. For example, Zhou et al. [44] discuss how they used
procfs output based on the uid_stat.tcp_snd field to in-
fer when a victim sent a tweet (a la Twitter) as follows:
“a tweet is considered to be sent when the increment se-
quence is either (420|150, 314, 580–720) or (420|150, 894–
1034).” [44, Sec. 3.2] That is, their attack works by reading
from procfs four times in a short interval to obtain values
x[1], x[2], x[3], x[4] where x denotes the uid_stat.tcp_snd
field, and deciding that a tweet was sent if either x[2]−x[1] ∈

{150, 420}, x[3]−x[2] = 314, and x[4]−x[3] ∈ {580, . . . , 720}
or x[2]−x[1] ∈ {150, 420} and x[3]−x[2] ∈ {894, . . . , 1034}.
So, to interfere with this attack, it is necessary to render
these readings from the “database” x indistinguishable from
readings from an alternative“database”x′ that reflects a run
in which no tweet was sent. This insight led us to choose
the following metric d∗ for enforcing privacy:

d∗(x, x′) =
∑

i≥1

|(x[i]− x[i− 1])− (x′[i]− x′[i− 1])|

Proposition 3. d∗ is a metric.

The distance d∗ captures the distinguishability of consecu-
tive pairs of observations of a data-structure field via procfs,
and so by defining d∗ in this way (and choosing ϵ appropri-
ately), we ensure that a (d∗, ϵ)-private mechanism can hide
the differences between x and x′ that, e.g., enabled Zhou et
al. to identify a tweet being sent in their attack.

Moreover, adopting d∗ is plausibly of use in defending
against a much broader range of attacks, since d∗-privacy
implies dL1-privacy:

Proposition 4. If A is (d∗, ϵ)-private, then A is (dL1, 2ϵ)-
private.

Since any p-point metric space can be embedded in L1 dis-
tance with O(log p) distortion [1], making it difficult to dis-
tinguish x and x′ with low d∗ (and hence L1) distance should
make it more difficult to distinguish them via other distance
metrics, too.

One challenge of using d-privacy to protect information
from kernel data structures used in responding to procfs
reads is that the information obtained through procfsmight
become inconsistent. That is, our mechanism might break
data-structure invariants on which the procfs code or the
clients of procfs rely. dpprocfs therefore reestablishes these
invariants on the d-private values prior to providing them to
procfs code. So, for example, since enforcing d-privacy adds
noise to the mm_struct.total_vm and mm_struct.shared_vm
values, the resulting values might fail to satisfy the invariant
mm_struct.total_vm ≥ mm_struct.shared_vm. dpprocfs
thus adjusts mm_struct.total_vm and mm_struct.shared_vm
to reestablish this invariant before permitting them to be



used by the procfs code. In Sec. 4.4, we describe how
we generate the invariants for these kernel data structures
and how we reestablish those invariants on d-private values.
Note that these invariants are public information: they can
be extracted statically or dynamically via the same meth-
ods we obtain them, and post-processing d-private values
to reestablish these invariants does not impinge on their d-
privacy (cf., [24]).

4.3 d∗-Private Mechanism Design
In this section we describe the mechanism we use to imple-

ment d∗-privacy for the conceptual single-column database x
described above. This mechanism is due to Chan et al. [12],
though they considered only the case where x[i+ 1]−x[i] ∈
{0, 1} and, moreover, differential privacy (so that x[i+ 1]−
x[i] ̸= x′[i+ 1]−x′[i] for only one i), rather than d∗-privacy
as we do here. As such, our primary contribution is in prov-
ing that this mechanism generalizes to implement d∗-privacy
and does so for vectors over the natural numbers.

Let N denote the natural numbers and D(i) ∈ N denote
the largest power of two that divides i; i.e., D(i) = 2j if and
only if 2j |i and 2j+1̸ | i. Note that i = D(i) if and only if i
is a power of two. The mechanism A computes a value x̃[i]
that is used in place of x[i] in the procfs code using the
recurrence

x̃[i] = x̃[G(i)] + (x[i]− x[G(i)]) + ri (1)

where x[0] = x̃[0] = 0, Lap (b) denotes the Laplace distribu-
tion with scale b and location µ = 0, and

G(i) =

⎧

⎪

⎨

⎪

⎩

0 if i = 1

i/2 if i = D(i) ≥ 2

i−D(i) if i > D(i)

(2)

ri ∼

⎧

⎨

⎩

Lap
(

1
ϵ

)

if i = D(i)

Lap
(

⌊log2 i⌋
ϵ

)

otherwise
(3)

So, for example, the first eight queries to x result in the

following return values, where ri
$
← Lap (b) denotes sam-

pling randomly according to the distribution Lap (b).

x̃[1] ← x[1] + r1 where r1
$
← Lap

(

1
ϵ

)

x̃[2] ← x̃[1] + (x[2]− x[1]) + r2 where r2
$
← Lap

(

1
ϵ

)

x̃[3] ← x̃[2] + (x[3]− x[2]) + r3 where r3
$
← Lap

(

1
ϵ

)

x̃[4] ← x̃[2] + (x[4]− x[2]) + r4 where r4
$
← Lap

(

1
ϵ

)

x̃[5] ← x̃[4] + (x[5]− x[4]) + r5 where r5
$
← Lap

(

2
ϵ

)

x̃[6] ← x̃[4] + (x[6]− x[4]) + r6 where r6
$
← Lap

(

2
ϵ

)

x̃[7] ← x̃[6] + (x[7]− x[6]) + r7 where r7
$
← Lap

(

2
ϵ

)

x̃[8] ← x̃[4] + (x[8]− x[4]) + r8 where r8
$
← Lap

(

1
ϵ

)

Chan et al. characterize the amount of noise introduced
by the mechanism described above, which grows only loga-
rithmically in i, specifically:

Proposition 5 ([12]). With probability at least 1 − δ,

|x̃[i]− x[i] | = O
(

(log 1
δ )× (⌊log i⌋)3/2 × ϵ−1

)

.

Our main contribution as it relates to this mechanism de-
sign lies in showing the following result:

Proposition 6. The algorithm in Eqns. 1–3 is (d∗, 2ϵ)-
private.

4.4 Consistency Enforcement
The values provided to procfs code, once rendered d∗-

private by the mechanism described in Sec. 4.3, are pro-
cessed as usual by the procfs code to produce the values
served as the contents of the queried procfs files. By adding
noise to these values, however, it is possible that we cause
them to violate invariants on which the procfs code or the
reader of the procfs files depends. As such, prior to pro-
viding the d∗-private values to the procfs code, we process
these values to re-establish invariants on which this code
might depend.

Specifically, the invariants we reestablish are of two types,
namely one-field ormultiple-field. A one-field invariant holds
between the values of the same data-structure field when
queried at two different times. For example, the fact that
the task_struct.utime field is monotonically nondecreasing
is a one-field invariant. In contrast, a multiple-field invariant
holds among the values of two or more data-structure fields
accessed at the same time, e.g., mm_struct.hiwater_rss <
mm_struct.shared_vm. There could also be invariants that
hold among the values of two or more data-structure fields
accessed at different times, though we do not consider such
invariants here.

Techniques for invariant identification range from static
(e.g., [45]) to dynamic (e.g., [22]) and combinations thereof
(e.g., [16]). While dpprocfs is agnostic to the method of
invariant generation, the type we explored for our proto-
type is dynamic. Intuitively, in this approach we execute
the system under a variety of workloads, taking snapshots
of the relevant kernel data structures after they are updated.
We then post-process these snapshots to identify properties
that held consistently in all executions. Obviously we can-
not detect all such properties (there are infinitely many that
could be inferred from finitely many traces), nor is identify-
ing all of them strictly necessary. (We return to this issue in
Sec. 7.) In Sec. 5.2, we detail the invariants that dpprocfs
enforces in our current implementation, though we stress
that these invariants can be generated through a combina-
tion of techniques—including manually.

Enforcing these invariants involves processing the data-
structure field values output by the d∗-private mechanism
described in Sec. 4.3 to satisfy these invariants. More specif-
ically, any attempt to read from a procfs file will cause an
access to certain data-structure fields. The values in these
fields and in any other fields related to them by multi-field
invariants (even transitively) are each subjected to the d∗-
private mechanism of Sec. 4.3, producing a noised value x̃[i]
to replace the actual value x[i] in this, the i-th, access to
this field. These outputs are then altered to satisfy relevant
single-field and multiple-field invariants, resulting in a final
output x̂[i] for further processing by the kernel routine that
produces the contents of the accessed procfs file.

In Sec. 5.3, we explore two ways of manipulating these
outputs to satisfy invariants. In the first, to which we refer
as computing a heuristic solution to the invariants, dpprocfs
leverages a hand-implemented algorithm to deterministically
modify the outputs to conform. This method is very effi-
cient, but might alter the outputs more than other ways of
satisfying the invariants might. In the second approach, to
which we refer as computing the nearest solution to the in-



variants, we generate an integer programming problem with
the invariants as constraints and an objective of minimizing
the total magnitude of the changes to the d∗-private out-
puts to conform to the invariants. We then feed this integer
program to a commercial solver (in our current implementa-
tion, CPLEX1) to compute an optimal solution. We stress
that both the heuristic and nearest solutions are computed
using invariants that an adversary can compute himself (i.e.,
are public), and so this post-processing does not erode the
d∗-privacy of these outputs.

5. IMPLEMENTATION
We implemented dpprocfs as a suite of software tools in

Ubuntu Linux LTS 14.04 with kernel version 3.13.11. dp-
procfs consists of three components: a kernel extension,
which we call privfs, that enhances the procfs with d∗-
private mechanisms (as discussed in Sec. 4.3) without al-
tering its existing program interfaces; a software tool, in-
vgen, that automatically searches for invariants in kernel
data structures for maintaining procfs value consistency (as
discussed in Sec. 4.4); and a userspace daemon, privfsd,
that interacts with the kernel extension and facilitates con-
sistency enforcement in real time.

5.1 d∗-Private Mechanism Implementation
When a file in procfs is read by a userspace process, a ker-

nel function is invoked to serve the request, and the return
values are sent to the process as if it is reading a file. The
values reported by procfs are computed from fields in cer-
tain kernel data structures. To generate d∗-private outputs,
a kernel extension privfs computes noised versions of those
protected fields for use by the kernel function computing the
procfs output.

Specifically, privfs introduces a kernel data structure of
type privfs_struct per kernel data-structure field x that is
protected (rendered d∗-private) by dpprocfs. This structure
includes two arrays of floating-point values. After access i
to the data-structure field x to which the privfs_struct
structure is associated, position log2 D(i) in these arrays
are updated to hold x[i] − x[G(i)] and ri, respectively. To-

gether with x
[

2⌊log2 i⌋
]

and x̃
[

2⌊log2 i⌋
]

, which the struc-

ture also stores, these arrays permit the efficient computa-
tion of x̃[i+ 1]. Also to speed up this computation, the
privfs_struct structure maintains a buffer of 32B to store
precomputed random values ri+1, ri+2, . . . following the
specified Laplace distributions. Buffer refilling is imple-
mented as a tasklet, a type of software IRQ in Linux kernels.

The arrays in privfs_struct in our present implementa-
tion are of fixed length, specifically 32 floating-point values,
which limits the number of queries to the protected data-
structure field to 232 − 1. These arrays might instead be
made arbitrarily extensible so as to allow an unlimited num-
ber of queries. That said, as the query count i grows, the
accuracy of the returned x̃[i] value decays. As such, alterna-
tive designs might limit (or rate-limit) the number of queries
to any protected data-structure field by each userspace pro-
cess or its associated user. Another implementation choice
might be to maintain separate arrays for each user of the
system, so that queries from one user would not decrease
the utility of queries from other users.

1http://www.ibm.com/software/commerce/
optimization/cplex-optimizer/

privfs does not return x̃[i] directly for use in computing
the procfs output. Instead, it sends this value to privfsd
for enforcing invariants across all noised values. privfsd will
be discussed in Sec. 5.3, after we discuss how data-structure
invariants are identified in Sec. 5.2.

5.2 Invariant Generation
Kernel data-structure invariants are generated by a com-

ponent called invgen. invgen generates two types of in-
variants, namely one-field and multiple-field invariants as
discussed in Sec. 4.4. One-field invariants are relationships
between a field’s current and previous values. Multiple-field
invariants are relationships between different variables when
accessed at the same time.

As discussed in Sec. 4.4, our system generates invariants
from traces of data-structure values captured during exe-
cution. Specifically, invgen does so by collecting execution
traces of all numerical data-structure fields that are relevant
to procfs outputs. To do so, we patch an OS kernel by
adding one more file in the procfs to directly export all nu-
meric kernel data-structure fields of interest. invgen then
repeatedly reads the extended procfs file, sampling the val-
ues of these fields frequently and writing them into trace
files. For this paper, traces were collected by monitoring
the data-structure fields during the execution of a variety of
software programs, including Google Chrome and a set of
benchmark applications from Phoronix Test Suite2. By exe-
cuting each benchmark application three times, we collected
22.6MB of trace files.

We then used Daikon [22] to extract invariants from these
trace files. To use Daikon, we first configured it with in-
variant templates, or filters, that the tool uses to search
for invariants. For one-field invariants, Daikon was config-
ured with filters to locate fields that do not change, that are
monotonically nonincreasing, or that are monotonically non-
decreasing. For multiple-field invariants, we implemented a
filter that Daikon uses to search for linear invariants among a
set X of fields, i.e., a property of the form

∑

x∈X cx×x[i] ≥ 0
that holds for all i, for some constant cx ∈ {−1, 0, 1}. We
ran Daikon with this filter for two sets X , one for memory-
related fields and one for scheduler-related fields. After using
Daikon to extract likely invariants in this way, we manually
inspected the outputs and discarded those that were either
implied by others or that we believed to be spurious.

The invariants produced in this way are shown in Table 2.
(We also include invariants that all fields are integral, but
we do not show those, for brevity.) The right half of the ta-
ble shows the invariants expressed using the labels for kernel
data-structure fields indicated in the left half of the table.
The fields marked “Protected” in the left half of the table
are those that dpprocfs renders d∗-private in our present
implementation. Those fields marked with a “!” were se-
lected based on their use in existing attacks (see Sec. 3.1),
and those marked with a “checkmark”were selected for pro-
tection because they are included in invariants with such
fields. One field, namely uptime, is not protected in our
present implementation despite being included in invariants,
simply because the information it carries (the time since the
machine was booted) seems unlikely to carry information
useful to a side-channel attack. That said, it could also be
protected with minimal additional cost.

2http://www.phoronix-test-suite.com



Data-structure field Protected Label

mm_struct.total_vm ! totalVM
mm_struct.shared_vm ! sharedVM
mm_struct.stack_vm " stackVM
mm_struct.exec_vm " execVM
mm_struct.rss_stat.count[MM_FILEPAGES] ! filePages
mm_struct.rss_stat.count[MM_ANONPAGES] ! anonPages
mm_struct.rss_stat.count[MM_SWAPENTS] " swapEnts
mm_struct.hiwater_rss " hiwaterRSS
mm_struct.hiwater_vm " hiwaterVM

task_struct.utime ! utime
task_struct.stime " stime
task_struct.gtime " gtime
task_struct.signal->cstime " cstime
task_struct.signal->cutime " cutime
task_struct.real_start_time " starttime
task_struct.nvcsw ! nvcsw
task_struct.nivcsw ! nivcsw
get monotonic boottime() uptime

Invariants

totalVM ≥ 0 swapEnts ≥ 0 cstime ≥ 0 utime[i] ≥ utime[i− 1]
sharedVM ≥ 0 hiwaterRSS ≥ 0 cutime ≥ 0 stime[i] ≥ stime[i− 1]
stackVM ≥ 0 hiwaterVM ≥ 0 nvcsw ≥ 0 gtime[i] ≥ gtime[i− 1]
execVM ≥ 0 utime ≥ 0 nivcsw ≥ 0 cstime[i] ≥ cstime[i− 1]
filePages ≥ 0 stime ≥ 0 cutime[i] ≥ cutime[i− 1]
anonPages ≥ 0 gtime ≥ 0 nvcsw[i] ≥ nvcsw[i− 1]

nivcsw[i] ≥ nivcsw[i− 1]
hiwaterRSS < sharedVM starttime[i] = starttime[i− 1]
hiwaterVM ≥ filePages
execVM ≥ filePages + swapEnts
sharedVM + filePages ≥ anonPages + swapEnts
sharedVM + execVM ≥ filePages + anonPages + swapEnts
sharedVM ≥ execVM+ filePages + swapEnts
totalVM ≥ execVM+ stackVM + filePages + anonPages + swapEnts
totalVM ≥ sharedVM + stackVM + swapEnts
totalVM+ filePages ≥ sharedVM + anonPages + swapEnts
totalVM+ execVM ≥ sharedVM + stackVM + filePages

+ anonPages + swapEnts
uptime ≥ starttime + utime+ stime+ gtime + cutime + cstime

Table 2: Selected kernel data-structure fields (Linux kernel 3.13) and generated invariants (Sec. 5.2) that
reference them. “Protected” fields are rendered d∗-private as described in Sec. 5.1, either because they have
been utilized in published side-channel attacks (!) or because they are involved in invariants that include
such fields (").

The upper right corner of the right half of Table 2 lists
one-field invariants, e.g., that task_struct.utime[i] (the
i-th access to task_struct.utime) is at least as large as
task_struct.utime[i− 1]. That is, task_struct.utime[i]
is nondecreasing. The other invariants hold for all simulta-
neous accesses to the indicated fields.

Our chosen method of invariant generation is admittedly
limited, in that like any method of invariant generation
based on an incomplete set of recorded traces, it allows
for false positives and false negatives. False positives—i.e.,
found“invariants” that are not actually invariants—will pre-
sumably not cause difficulties for the procfs code or appli-
cations when dpprocfs enforces them, since even if not in-
variant, the identified behavior is evidently common. False
negatives (i.e., missed invariants) might cause such prob-
lems, however, and so it would be prudent to augment our
dynamic approach with static analysis (e.g., [16, 45]) and
additional manual inspection. That said, we have not iden-
tified applications (or kernel routines that respond to procfs
reads) that appear to depend on behaviors other than those
identified in Table 2.

5.3 Reestablishing Invariants
Upon producing x̃[i] for each protected field x needed by a

kernel routine to respond to a procfs query,3 privfs needs
to reestablish the invariants among those field values be-
fore submitting them to the kernel routine. For our pro-
totype, we implemented this step in a userspace daemon
process, which we call privfsd, that receives requests from
the privfs via Netlink sockets. This implementation choice
allows us to sidestep the need to port more complex op-
erations (e.g., floating-point operations, constraint-solving
algorithms) to run in the kernel.
privfs produces inputs for privfsd by first identifying

the set X of protected fields to be accessed by the kernel rou-

3We are abusing notation here slightly, in that the access
index i might be different per field x.

tine serving the procfs query (i.e., from those fields marked
“protected” in Table 2). privfs forms the set of relevant
invariants from Table 2, namely I(X ) =

⋃

x∈X I(x) where
I(x) for any x is defined using the following inductive def-
inition: (i) I(x) is initialized to include any constraint in
Table 2 that includes field x; and (ii) if any protected field
x′ from Table 2 is named in an invariant already in I(x),
then I(x′) is added to I(x). privfs instantiates each pro-
tected field x named in I(X ) with a variable x̂[i] and, if
uptime ∈ I(X ), instantiates uptime with its current value.
privfs then produces the relevant value x̃[i] for each field
x ∈ X and sends I(X ) and the noised values {x̃[i]}x∈X to
privfsd.
privfsd operates in one of two modes, computing either

a nearest compliant assignment to each x̂[i] or a heuris-
tic assignment to each x̂[i]. The nearest assignment is cal-
culated by taking the instantiated invariants I(X ) as con-
straints in an integer programming (IP) problem, with vari-
ables {x̂[i]}x∈X and objective being to minimize the cumula-
tive relative error, i.e., to minimize

∑

x∈X |x̃[i]− x̂[i] |/|x̃[i] |.
Our current implementation invokes CPLEX to solve this IP
problem. In contrast, the heuristic approach simply calcu-
lates any values for {x̂[i]}x∈X that satisfy I(X ) using man-
ually coded heuristics to adjust the {x̃[i]}x∈X values. In
Sec. 6, we will evaluate both modes of operation. Regard-
less of its mode of operation, privfsd returns the computed
values {x̂[i]}x∈X to privfs to pass along to the kernel rou-
tine for preparing the procfs output to the waiting client.

6. EVALUATION
In this section we evaluate the efficacy of dpprocfs de-

sign. While our design is provably d∗-private (and hence
dL1-private by Prop. 4), we perform an empirical security
evaluation of our design in Sec. 6.1 to better illustrate set-
tings of ϵ that suffice to interfere with known attacks. With
greater clarity as to reasonable settings of ϵ, we then evalu-
ate the utility of procfs for these ϵ values in Sec. 6.2.



6.1 Security Evaluation
In this section, we evaluate the capability of dpprocfs

to defend against side-channel attacks discussed in Sec. 3.1.
Specifically, we measure the extent to which the procfs fea-
tures used by the attacker in selected attacks are still ef-
fective attack features in dpprocfs. Rather than trying to
replicate each attack from previous work exactly, we adopt
a more general framework for evaluation in which the at-
tacker’s task is detecting one of m classes of activities.

We perform this measurement of the attacker’s likely suc-
cess by building a multiclass classifier for classifying procfs
features (which are attack-dependent) into one of m classes.
We use the scikit-learn4 support-vector-machine (SVM)
implementation to build the multiclass classifier. We then
report the accuracy of the classifier in a testing phase, namely
the fraction of test instances that it classifies correctly.

6.1.1 Defending Against Keystroke Timing Attacks
The voluntary context switch counter (nvcsw in Table 2)

can be exploited to identify a user’s keystroke actions and
hence the timing characteristics of those keystrokes. These
timing characteristics can then leak information about what
those keystrokes were (e.g., [40]). To approximate the de-
fense that dpprocfs offers against this attack, we consider
an adversary that consecutively reads the nvcsw field from
procfs six times, and then the adversary classifies this vec-
tor of readings to determine when the keystroke occurred.
(We only inject one keystroke during these six readings.) As
such, we model the attacker as a multi-class classifier, which
classifies the vector of six readings (i.e., a vector in N

6) into
m = 5 classes; classifying a vector as class i indicates that
the keystroke occurred between reads i and i+ 1.

To perform these experiments, we used a tool called xdo-
tool to simulate the keystroke actions at a specified time.
During each experiment run, we started a bash terminal and
injected one keystroke, at a time distributed normally with
mean 2.5s and standard deviation 0.83s (i.e., 0.0s is three
standard deviations from the mean). Beginning with the
launch of the bash process, the attacker process read the
/proc/<pid>/status file of the bash process every second5

to obtain the voluntary context switch counter nvcsw, yield-
ing six readings (a vector in N

6). Invariant enforcement
(Sec. 5.3) provided the nearest solution to the needed in-
variants. To allow for a powerful attacker, we provided to it
the underlying normal distribution imposed on the keystroke
timing. The attacker used this distribution to estimate the
true (unnoised) nvcsw value corresponding to each vector el-
ement (adapting [34, Eqn. 10]), yielding an estimated true
vector per collected vector. We repeated this experiment
440 times to get 440 estimated true vectors. When training
and testing the SVM classifier, we used 75% of the vectors
from each class for training and 25% for testing.

The accuracy of the resulting classifier on the testing ex-
amples is shown in Fig. 1(a). The horizontal axis shows var-
ious values of ϵ; the vertical axis shows classifier accuracy.
Because of the form of the distribution imposed on keystroke

4http://scikit-learn.org/dev/index.html
5This interval is much longer than in the demonstrated at-
tack of Jana et al. [25], but we lengthened this interval to
minimize ambiguity regarding the class i ∈ {1 . . . 5} to which
each vector should be assigned for training. By increasing
this interval, we believe we produced classification results
that are conservative (i.e., advantageous for the attacker).
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(b) Website inference attack

Figure 1: Multi-class classifier accuracy under dif-
ferent ϵ settings; dashed horizontal lines show accu-
racies of blind guesses based only on knowledge of
the likelihood of each class

timings, the most likely class occurred roughly 44% of the
time, and so this baseline (shown by the horizontal dashed
line) is the accuracy that the adversary could achieve simply
by blindly guessing based on that distribution. As shown in
the graph, setting ϵ ∈ [1, 3] suffices to reduce the classifier
to this baseline accuracy. By comparison, the classifier was
perfect (an accuracy of 1.0) when no noise was added.

6.1.2 Mitigating Website Inference
The memory footprint of a browser can leak the website

it visits (as discussed in Sec. 3.1). In this experiment, we
instrumented the Google Chrome browser with a script to
visit a target website, chosen uniformly from the Alexa top-
10 websites. While this occurred, an attacker process re-
peatedly sampled the data resident size field drs, calculated
as totalVM− sharedVM (using the labels defined in Table 2),
by reading the /proc/<pid>/statm of the browser process
every 500µs. To support this rate of sampling, dpprocfs
employed the heuristic method of invariant reestablishment
(Sec. 5.3), which returned results in roughly 50µs (in com-
parison to 8ms for the nearest solution). The sampling pe-
riod lasted for 3s, during which the attack process recorded
all the drs field values read. As in Sec. 6.1.1, the attacker
estimated the true (unnoised) drs value corresponding to the
j-th read value in each 3s interval, using an empirical distri-
bution observed for these j-th values gathered by accessing
each of these 10 websites an equal number of times. The at-
tacker then constructed a histogram of these estimated drs
values binned into seven equal-width bins, and the vector of
bin counts (in N

7) was used as a feature vector for classifi-
cation. Each of the Alexa top-10 websites were visited 100
times; when used to train and test the SVM classifier (with
m = 10 classes), 70% were used for training and 30% were
used for testing.

The resulting accuracy of the classifier is shown in Fig. 1(b).
The most important distinction from the graph in Fig. 1(a)
is that the values of ϵ needed to interfere with the website
inference attack are much smaller, meaning that the noise
added was greater. This is primarily a function of the size
differences between drs readings from the m classes, which
were generally much greater than the differences between the
readings of the voluntary context switch counter nvcsw with
and without a keystroke. In terms of d∗, the distances be-
tween the classes in the website inference attack were much
greater than the distances between classes in the keystroke
attack. This is noteworthy because it implies that the set-



tings of ϵ needed for privacy will differ per-field and per-
application and, to some extent, will need to be informed
by known attacks. Still, however, several values tested for ϵ
decayed classification accuracy to a significant extent; with
no noise added, the classifier reached 0.915 accuracy.

6.2 Utility Evaluation
We evaluate the utility of dpprocfs in two ways. First, we

measure the relative error of selected procfs outputs that
are calculated using fields protected by dpprocfs, under the
two methods discussed in Sec. 5.3 for enforcing invariants,
namely producing a heuristic solution and a nearest solution
to the invariants. Second, we report the impact of dpprocfs
to the ranking of processes according to certain features by
top, a common utility for monitoring and diagnosis. Here
we focus on dpprocfs outputs such as memory and CPU
usage, as these are generally useful systems diagnostics.

6.2.1 Relative Error
We begin our utility evaluation by measuring the relative

error of the drs field, the same field exploited by website in-
ference attackers (see Sec. 6.1.2). To calculate the relative
error of this field under dpprocfs, we preserved access to an
unprotected version of procfs alongside the protected ver-
sion. Then, we extended our setup described in Sec. 6.1.2
to simultaneously query both the protected and unprotected
versions of the drs field while the browser process was run-
ning. During the evaluation, the browser was instrumented
to repeatedly visit https://www.youtube.com, and the drs
field was queried every 50ms for a total of 500 queries. We
repeated this experiment 200 times.
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Figure 2: Comparison be-
tween nearest and heuris-
tic invariant reestablish-
ment for drs field; ϵ = 0.005

Fig. 2 shows the dis-
tribution of relative er-
ror for both the nearest
and heuristic solutions
for invariant reestab-
lishment, computed on
the same noised values
x̃ produced by privfs,
for a parameter setting
(ϵ = 0.005) that pro-
vided good security for
the side-channel attack
tested in Sec. 6.1 (see
Fig. 1(b)). Each query
range on the horizontal
axis has two box-and-whiskers plots, one for nearest and
one for heuristic. The three horizontal lines forming each
box indicate the first, second (median), and third quartiles,
and the whiskers extend to cover all points within 1.5×
the interquartile range. Outliers are indicated using plus
(“+”) symbols. A different box-and-whiskers plot is shown
per 100-query block across the 200 runs (i.e., each boxplot
represents 20,000 points) because the noise increases as the
number of queries grows. The differences between the near-
est and heuristic distributions are nearly imperceptible, and
this trend holds for other parameter and procfs fields we
have explored, as well. That said, the heuristic solution re-
lies on hand-tuned algorithms and by default provides no
guarantees, and so in cases where the speed of computing
the nearest solution is acceptable—the nearest solution took
an average of 8ms to return, whereas our heuristic approach
completed in an average of 50µs—it might be preferable.
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Figure 3: Relative error for drs field under nearest
invariant reestablishment
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Figure 4: Relative error for utime field under nearest
invariant reestablishment

Fig. 3 and Fig. 4 represent the relative error in readings of
the drs field and of the utime field from the /proc/<pid>/stat
file, respectively, for various values of ϵ. The values of ϵ
in Fig. 3 were chosen to overlap those used in the secu-
rity evaluation depicted in Fig. 1(b). The ϵ values tested in
Fig. 4 were chosen based on our simulation of the software-
keyboard side-channel attack of Lin et al. [28], which we
conducted on a Nexus 4 smartphone running Android 5.1
with kernel 3.4.0; based on this simulation, we estimated
that ranging ϵ over 1/2 ≤ ϵ ≤ 5 would result in curve simi-
lar to or better (with lower accuracy) than that in Fig. 1(a).6

In the tests in Fig. 4, the utime field was queried every 50ms
while a video game was running. These graphs suggest that
the relative error is typically modest, e.g., with a third quar-
tile of < 15% in Fig. 3 and < 30% in Fig. 4, though outliers
can be large.

6.2.2 Rank Accuracy of top
The utility top is used by Linux administrators for per-

formance monitoring and diagnosis. By reading procfs, top
displays system information like memory and CPU usage of
running processes. The processes are ranked by top accord-
ing to a chosen field. In this section, we evaluate the utility
of dpprocfs by measuring the rank accuracy of top when
run using dpprocfs in place of the original procfs.

To measure the rank accuracy, we ran two top processes
on one computer. These two top processes were started at
the same time and updated information with the same fre-
quency (every two seconds in our tests). The only difference
was that one top process read from dpprocfs (with heuristic
invariant reestablishment), and the other read from procfs
in its original form. To control the test workload in each ex-
periment, we ran a set of ten processes doing floating-point

6Lin et al. reported querying the utime field of the software
keyboard process every 100ms to detect its increase. With
very rapid typing, the utime field in our tests increased less
than 3 (jiffies) per 100ms interval, on average.
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(a) ϵ = 0.005
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(b) ϵ = 0.01
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(c) ϵ = 0.02
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(d) ϵ = 0.04

Figure 5: Average rank accuracy based on RES field

computations continually during each test. The number of
memory pages allocated by each process to store its array of
floats was scaled linearly across the ten processes: the first
process allocated an 80MB array, the next process allocated
a 95MB array, and so on up to the tenth process, which
allocated a 215MB array. Similarly, the processes were con-
figured with linearly scaled nice values ranging from −19
(highest priority) through −1 (lowest).

Let R(k) and R′(k) be the set of top k processes displayed
by the two top programs. The top-k accuracy is defined as
1
k |R(k) ∩ R′(k)|. Fig. 5 shows the average rank accuracy for
various values of k when processes were ranked by the RES
field. The RES field is read from /proc/<pid>/statm, calcu-
lated as filePages + anonPages, and represents the physical
memory usage of the process. Fig. 6 shows the average rank
accuracy when processes were ranked by the %CPU field, cal-
culated as (utime[i]−utime[i− 1])/(uptime[i]−uptime[i− 1]).

Several observations from Fig. 5 and Fig. 6 are worth not-
ing. First, top retains much of its ability to rank processes
by these measures; e.g., even for the lowest values of ϵ tested
(Fig. 5(a) and Fig. 6(a)), the top-5 ranks remained roughly
80% correct on average through the tests. Second, whereas
the top-10 rank is generally more accurate than the top-1
rank in Fig. 5, the reverse is true in Fig. 6. This occurs be-
cause while the memory usage of the ten test processes was
scaled linearly, our linear scaling of nice values caused the
actual %CPU to drop off super-linearly. So, for example, the
average difference in %CPU values for the processes with nice
values −19 and −18 was much larger than the average %CPU
difference between processes with nice values −3 and −1.

7. DISCUSSION

Security limitations. Since we do not noise every ker-
nel data-structure field that is used to serve procfs queries,
there remains the possibility that such fields might reveal in-
formation about the true values of noised fields. This could
occur either because the unprotected fields are related to
those noised fields by invariants that our techniques did not
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Figure 6: Average rank accuracy based on %CPU field

find (see Sec. 5.2) or because those relationships are only
statistical (but not invariant). It will therefore be neces-
sary to extend the scope of our protections to other fields
as new procfs storage side-channel attacks are discovered
or, in the limit, that all kernel data-structures used to gen-
erate procfs contents be protected. As additional fields are
brought under the protections of dpprocfs, the invariants
that are reestablished on those values will need to be ex-
panded appropriately.

Similarly, the value of ϵ used to protect a field might need
to be updated as new attacks involving that field are dis-
covered. As shown in Sec. 6.1, the value of ϵ may need to
differ from one field to another. The magnitude of ϵ needed
for a field will be correlated with the variation of that field
and the number of queries over which protection needs to be
provided, since as the number of queries grow, presumably
so might d∗ (between the actual field values and another
from which it should remain indistinguishable).

Utility limitations. As the number of procfs queries
grows, the amount of noise added to the kernel data-structure
fields used to generate the procfs outputs grows (see Sec. 4.3
and Sec. 5.1). As such, the utility of procfs outputs gener-
ated from those fields will decay. To slow this decay, it may
be necessary to rate-limit the queries that involve each field
or to limit the number of such queries from any one user. Or,
as suggested in Sec. 5.1, a separate privfs_struct could be
maintained per querying user, though that obviously weak-
ens the mechanism against colluding users.

It may eventually be necessary to “reset” the d∗-private
mechanism associated with a field, particularly for a field
associated with a long-running process. A natural way to
do so would be to restart the process itself, since restarting
a process also refreshes its associated kernel data structures.
(This is also beneficial for performance and reliability [15].)

Extensions to other storage side channels. We be-
lieve our proposed method can be extended to other storage
side channels such as those associated with mobile sensors
(e.g., [10, 30, 43, 11, 6, 33, 39]). However, it is unclear how



adding noise, e.g., to smartphone gyroscopes, will affect the
usability of the apps that rely on their readings.

Alternative solutions to procfs side channels. An al-
ternative to adding noise in procfs outputs is to isolate mu-
tually distrusting processes into different namespaces so that
they cannot read each others’ private procfs files. For ex-
ample, Linux containers7 isolate multiple applications from
each other using PID namespaces in the kernel. While useful
in hosting services such as modern PaaS clouds, Linux con-
tainers are less suitable in personal computing environments
(e.g., Android devices and desktop computers) since shar-
ing between different software applications are necessary in
these single-user settings. Without a shared procfs, appli-
cations that needs accesses to these system statistics—e.g.,
most traffic- and system-monitoring apps on Google Play,
as well as the sysstat utilities8—will no longer work.

8. CONCLUSION
In this paper we have reported on the design, implemen-

tation, and evaluation of dpprocfs, a modification to the
procfs pseudo file system that suppresses storage side chan-
nels. The innovations that are central to our design include:
(i) framing the side-channel problem as one of achieving d-
privacy for continual data release, and defining an appropri-
ate distance d∗ for instantiating d-privacy for this scenario;
(ii) generalizing a differentially private mechanism for the
continuous release of binary values to the d∗-privacy goal
we set forth; (iii) recognition of the systems difficulties that
can arise when adding noise to procfs outputs, and an in-
variant reestablishment framework to address those difficul-
ties; and (iv) a working implementation of dpprocfs, cou-
pled with an evaluation that shows it can simultaneously
defend against known storage side-channel attacks while re-
taining the utility of procfs for monitoring and diagnosis.
Our solution provides a configurable framework to suppress
new storage side channels as they are discovered, through
adding protection to additional kernel data-structure fields
or updating the ϵ values associated with each field and ap-
plication. We further believe that the mechanisms we have
developed within our solution might be applicable to other
storage side channels, and we plan to explore this direction
in future work.
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APPENDIX

A. PROOFS

Proof of Prop. 1.

P
(

A′′(x, x′) ∈ Z × Z′)

= P (A(x) ∈ Z)× P
(

A′(x′) ∈ Z′)

≤ exp(ϵ× d(x, x′′))× P
(

A(x′′) ∈ Z
)

× exp(ϵ′ × d(x′, x′′′))× P
(

A′(x′′′) ∈ Z′)

= exp(ϵ× d(x, x′′) + ϵ′ × d(x′, x′′′))

× P
(

A′′(x′′, x′′′) ∈ Z × Z′)

Proof of Prop. 2. First note that for any i and any
z ∈ Z,

P (x[i] + ri = z)
P (x′[i] + ri = z)

=
exp(−ϵ× |x[i]− z|)
exp(−ϵ× |x′[i]− z|)

= exp(−ϵ× (|x[i]− z|− |x′[i]− z|))

= exp(ϵ× (|x′[i]− z|− |x[i]− z|))

≤ exp(ϵ× (|x[i]− x′[i] |))

The result then follows from Prop. 1.



Proof of Prop. 3. For any x, x′ ∈ Z
n, the properties

d∗(x, x) = 0 and d∗(x, x′) = d∗(x′, x) are evident. The
triangle property results as follows, for x, x′, x′′ ∈ Z

n:

d∗(x, x′′) =
n
∑

i=1

|(x[i]− x[i− 1])− (x′′[i]− x′′[i− 1])|

=
n
∑

i=1

∣

∣

∣

∣

(x[i]− x[i− 1])− (x′[i]− x′[i− 1])
+(x′[i]− x′[i− 1])− (x′′[i]− x′′[i− 1])

∣

∣

∣

∣

≤
n
∑

i=1

|(x[i]− x[i− 1])− (x′[i]− x′[i− 1])|

+
n
∑

i=1

|(x′[i]− x′[i− 1])− (x′′[i]− x′′[i− 1])|

= d∗(x, x′) + d∗(x′, x′′)

Proof of Prop. 4. First note that

d∗(x, x′) =
n
∑

i=1

|(x[i]− x[i− 1])− (x′[i]− x′[i− 1])|

≤
n
∑

i=1

|x[i]− x′[i] |+
n
∑

i=1

|x[i− 1]− x′[i− 1] |

≤ 2× dL1(x, x
′)

Therefore, if A : X → Z is (d∗, ϵ)-private, then we have that
for any x, x′ ∈ X and any Z ⊆ Z,

P (A(x) ∈ Z)
P (A(x′) ∈ Z)

≤ exp(ϵ× d∗(x, x′))

≤ exp(ϵ× 2dL1(x, x
′))

= exp(2ϵ× dL1(x, x
′))

Proof of Prop. 6. For any i such that i = D(i) ≥ 2
and any zi,

P
(

(x[i]− x
[

i
2

]

) + ri = zi
)

P
(

(x′[i]− x′
[

i
2

]

) + ri = zi
)

≤ exp

(

ϵ×

∣

∣

∣

∣

(

x[i]− x

[

i
2

])

−

(

x′[i]− x′

[

i
2

])
∣

∣

∣

∣

)

by Prop. 2, and so

∏

i:i=D(i)≥2

P
(

(x[i]− x
[

i
2

]

) + ri = zi
)

P
(

(x′[i]− x′
[

i
2

]

) + ri = zi
)

≤ exp

⎛

⎝ϵ ×
∑

i:i=D(i)≥2
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∣

∣

∣

(

x[i]− x
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i
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(

x′[i]− x′
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∣
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∣

⎞

⎠

≤ exp

⎛

⎝ϵ ×
∑

i≥2

∣

∣(x[i]− x[i− 1])−
(

x′[i]− x′[i− 1]
)
∣

∣

⎞

⎠

(4)

Similarly, for any i > D(i) and any zi,

P ((x[i]− x[i−D(i)]) + ri = zi)
P ((x′[i]− x′[i−D(i)]) + ri = zi)

≤ exp
( ϵ
k
×

∣

∣(x[i]− x[i−D(i)])−
(

x′[i]− x′[i−D(i)]
)
∣

∣

)

where k = ⌊log2 i⌋. For any fixed j and k,

∏

i ∈ (2k, 2k+1)
: D(i) = 2j

P ((x[i]− x[i−D(i)]) + ri = zi)
P ((x′[i]− x′[i−D(i)]) + ri = zi)

≤ exp
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And so,

∏
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Finally, note that

P ((x[1]− x[0]) + ri = zi)
P ((x′[1]− x′[0]) + ri = zi)

≤ exp
(

ϵ× |(x[1]− x[0])− (x′[1]− x′[0])|
)

(6)

by Prop. 2. So, for any x, x′ ∈ Xn and any ⟨z1, . . . , zn⟩,

P (A(x) = ⟨z1, . . . , zn⟩)
P (A(x′) = ⟨z1, . . . , zn⟩)

=
n
∏

i=1

P
(

(x[i]− x[G(i)]) + ri = zi − zG(i)

)

P
(

(x′[i]− x′[G(i)]) + ri = zi − zG(i)

)

≤ exp

⎛

⎝2ϵ×
∑

i≥1

∣

∣(x[i]− x[i− 1])−
(

x′[i]− x′[i− 1]
)∣

∣

⎞

⎠

where the last step follows by multiplying Eqn. 6, Eqn. 4,
and Eqn. 5.


