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Abstract. Encoder-decoder architectures are widely adopted for medical
image segmentation tasks. These models utilize lateral skip connections to
capture and fuse both semantic and resolution information in deep layers,
enhancing segmentation accuracy. However, in many applications, such as
images with blurry boundaries, these models often struggle to precisely lo-
cate complex boundaries and segment tiny isolated parts due to the fuzzy
information passed through the skip connections from the encoder layers.
To solve this challenging problem, we first analyze why simple skip connec-
tions are insufficient for accurately locating indistinct boundaries. Based on
this analysis, we propose a semantic-guided encoder feature learning strat-
egy. This strategy aims to learn high-resolution semantic encoder features,
enabling more accurate localization of blurry boundaries and enhancing
the network’s ability to selectively learn discriminative features. Addition-
ally, we further propose a soft contour constraint mechanism to model the
blurry boundary detection. Experimental results on real clinical datasets
demonstrate that our proposed method achieves state-of-the-art segmenta-
tion accuracy, particularly in regions with blurry boundaries. Further analy-
sis confirms that our proposed network components significantly contribute
to performance improvements. Experiments on additional datasets validate
the generalization ability of our proposed method.

1 Introduction
Automatic image segmentation is an essential step in many medical image analysis
applications, including computer-aided radiation therapy, disease diagnosis, and
treatment effect evaluation. One of the major challenges in this task is the inherently
blurry nature of medical images (e.g., CT, MR, and microscopic images), which
often results in low-contrast and even vanishing boundaries, as illustrated in Fig. 1.

Many encoder-decoder based networks have been proposed for semantic seg-
mentation [6, 9, 13, 14], achieving promising performance across various tasks.
UNet [9], a typical encoder-decoder architecture that combines shallow and deep
features through skip connections, is widely used in numerous image segmentation
tasks. Several works have been proposed to enhance UNet [7, 10]. However, Heller et
al. [2] found that while deep segmentation models are robust in non-boundary re-
gions, they are less effective at handling boundaries. Specifically, these models often
struggle to segment blurry boundaries, particularly in cases of extremely low tissue
contrast. For example, prostate boundaries in MR or CT pelvic images are of-
ten blurry. To address this challenge, we argue that high-resolution, rich semantic
feature learning is essential.

In addition to the variants of UNet, other approaches have been proposed to
better delineate boundaries [4, 8, 11, 12, 15, 16]. Ravishankar et al. [8] introduced a
multi-task network that robustly segments organs by jointly regressing boundaries
and foreground. Zhu et al. [16] developed a boundary-weighted domain adaptive
neural network to accurately extract MRI prostate boundaries. Lee et al. [4] a novel
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Fig. 1: Illustration of the blurry and vanishing boundaries within pelvic MRI images,
together with overlaid ground truth contour and the typical feature maps in the
encoder layer of a conventional UNet. (a) and (b) are the two typical slices of
two subjects, in which boundaries of bladder and rectum are relatively clear, but
prostate is blurry.
structure boundary preserving segmentation framework to tackle the ambiguous
boundary delineation. However, these methods do not consider the high similarity
of voxels around blurry boundaries. Consequently, directly classifying or regressing
voxels as boundary or non-boundary is not ideal.

In this paper, we propose a novel semantic-guided encoder feature learning
mechanism to enhance skip connections in existing encoder-decoder architectures,
aiming to improve segmentation of low-contrast medical images. Our network de-
sign is based on the idea of explicitly utilizing high-resolution semantic informa-
tion to address the inaccuracies in boundary delineation found in current encoder-
decoder networks. Specifically, we concatenate low-layer (encoder) feature maps
with high-layer (decoder) feature maps and employ both channel-wise and spatial-
wise attention mechanisms. This approach facilitates the learning and selection of
high-resolution semantic encoder feature maps.

With these improved encoder feature maps, we further concatenate (or element-
wise add) them to the corresponding decoder layers within the encoder-decoder
framework. Additionally, we propose using soft labels to indicate the probability
of a voxel being on the boundary. Correspondingly, a soft cross-entropy loss is
introduced as a metric to address the blurry boundary delineation problem.

2 Method
The architecture of our proposed framework is presented in Fig. 2. This framework
utilizes an encoder-decoder architecture and addresses three tasks: segmentation,
clear boundary detection, and blurry boundary detection. The proposed semantic-
guided encoder feature learning module (SGM) is further highlighted in Fig. 3.

In the following subsections, we will analyze the deficiencies of skip connec-
tions in the current encoder-decoder framework. We then introduce the proposed
semantic-guided encoder feature learning strategy. Additionally, we will describe
the soft contour constraint for blurry boundary delineation. Finally, we will pro-
vide the implementation details.

2.1 Analysis of Skip Connection in Encoder-Decoder Architecture

In the classical encoder-decoder architecture [9], shallow and deep features are typ-
ically complementary. Shallow features are rich in resolution but lack sufficient
semantic information, while deep features are semantically rich but lack spatial
details. The skip connection proposed in UNet [9] aims to provide high-resolution
information from the shallow (encoder) layers to the deep (decoder) layers, improv-
ing localization precision without sacrificing classification accuracy. However, the
raw (simple) skip connection has several drawbacks: a) It introduces ’noise’ (unnec-
essary information) to the deep layers, which negatively affects the concatenation
of feature maps, as shown in the visualized encoder feature maps in Fig. 1. b) The
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Fig. 2: Illustration of the architecture of our proposed method, which consists of
a semantic-guided module (SGM). (a) means a segmentation branch, and (b) and
(c) indicate boundary detection branches.
significant gap between shallow and deep features reduces the effectiveness of this
combination. c) For clear boundaries (e.g., bladder and rectum), the encoder fea-
ture maps provide sufficiently precise localization information, allowing the raw skip
connection to work effectively (as shown in Fig. 1). However, for blurry boundaries
(e.g., prostate), the encoder feature maps fail to accurately describe these regions,
resulting in poor localization with simple skip connections (as shown in Fig. 1).
Therefore, it is crucial to select discriminative features rather than merely sup-
pressing non-discriminative features from shallow layers. In other words, we need
to learn high-resolution semantic features from the encoder. To achieve this, Roy et
al. [10] proposed a concurrent spatial-and-channel squeeze and excitation module
to enhance meaningful features and suppress weak ones. Oktay et al. [7] introduced
a gated attention mechanism to select the salient parts of the feature maps, further
improving UNet. However, in both works, the feature learning process is conducted
in an implicit manner, which limits learning efficiency.

2.2 Semantic-guided Encoder Feature Learning

To overcome the aforementioned problems, we propose to explicitly learn high-
resolution semantic features (which are also more discriminative) from shallow (en-
coder) layers with semantic guidance from deep (decoder) layers. The key idea is to
encode semantic concepts from deep layer features to guide the learning of shallow
features.

As shown in Fig. 3, our semantic-guided feature learning module (i.e., SG mod-
ule or SGM) is designed to selectively enhance or suppress the features of shallow
layer at each stage, thereby improving the consistency between shallow and deep
layers without losing resolution information. In addition to the widely-used channel-
wise encoder, we have also designed a spatial-wise encoder as described below.

We consider the feature maps of a certain encoder layer (i.e., shallow fea-
tures) to be S = {s1, s2, ..., sK}, where si ∈ RH×W×T . We also assume the up-
sampled feature maps in the corresponding decoder layer (deep features) to be
D = {d1, d2, ..., dK}, where di ∈ RH×W×T . We concatenate the two group of fea-
ture maps together and thus result in a bank of high-resolution and rich-semantic
mixed feature maps as shown in Eq. 1.

F = {s1, s2, ..., sK , d1, d2, ..., dK} . (1)

Channel-wise Encoding: With a global average pooling layer, we obtain a vector
Q = {q1, q2, ..., qK , ...q2K}, where qk is a scalar and corresponds to the averaging
value of the k-th feature maps in F . Then, two successive fully connected layer are
adopted to fuse the resolution and semantic information: Z = W1 (ReLU (W2Q)),
with W1 ∈ RK×K and W2 ∈ R2K×K . This encodes the channel-wise dependencies
by considering both shallow and deep features. We apply a sigmoid activation
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Fig. 3: Illustration of the proposed semantic-guided module (SGM), as shown in
( a ). The pink blocks represent the features of shallow layers, while the red ones
represent the features of deep layers. Different from direct skip connection in UNet,
we propose using semantic concept from deep layers to guide feature learning in the
corresponding shallow layers, for which a channel-wise encoder and a spatial-wise
encoder are both proposed, as shown in (b). ‘GAP’ means Global Average Pooling.

function to map the neurons to probabilities so that we can formulate as a channel-
wise importance descriptor, which can be described as σ (Z). Thus, the semantic-
guided channel-wise encoded feature maps are formulated as Eq. 2.

SGCF = {σ (z1) s1, σ (z2) s2, ..., σ (zK) sK} (2)

Note that the weight σ (zk) before the shallow feature map sk can be viewed
as an indicator of how important this specific feature map is. Thus, we argue this
channel-wise encoding is actually a semantic-guided feature selection process in
a channel-wise manner, which is able to ignore less meaningful feature maps and
emphasize the meaningful ones. In other words, it can help remove the ‘noise’ and
retain the useful information. More importantly, since σ (Z) has taken both high
resolution and rich semantic information into account, it has more discriminative
capacity than the case of only considering shallow layer information in [10].
Spatial-wise Encoding: Now we come to consider the spatial-wise importance to
achieve better fine-grained image segmentation.

Based on the concatenated feature maps F , we apply a 2K×1×1×1 convolution
to squeeze the channels. Therefore, we can obtain a one-channel output feature
map U , where U ∈ RH×W×T . We directly apply sigmoid function to acquire a
probability map for U . Similarly, the semantic-guided spatial-wise encoded shallow
feature maps can be described in Eq. 3.

SGSF = {σ (U)⊗ s1, σ (U)⊗ s2, ..., σ (U)⊗ sK} (3)

Since σ (Uh,w,t) corresponds to the relative importance of a spatial information at
(h,w, t) of a given shallow layer feature map, it can help select more important
features to relevant spatial locations and also ignore the irrelevant ones. Moreover,
σ (U) is a fusion of both resolution and rich semantic information, thus it can
provide a better localization capacity even for the blurry boundary regions which
cannot done by [10]. As a result, we view this spatial-wise encoding as a semantic-
guided recalibration process.
Combination of Encoded Feature Maps: Now we can formulate both channel-
wise and spatial-wise encoding by a simple element-wise addition operation, as
shown in eq. 4.

SGF = SGCF + SGSF (4)
This SGF considers both channel-wise encoded and spatial-wise encoded informa-
tion, thus, it contains not only the discriminative (semantic) features, but also more
accurate localization information.
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Final Combination with Deep-Layer Feature Maps: To this end, we can
simply complete the concatenation operation or element-wise addition operation.
Instead of using the shallow feature maps S, we use the channel-wise and spatial-
wise encoded shallow feature maps SGF to combine with the deep-layer feature
maps D (through concatenation or element-wise addition). Compared with the
raw skip connection in UNet, our encoded shallow feature maps SGF has same
resolution but much more semantic and precise localization information (especially
for the blurry regions), and thus can make the combination more reasonable. At
the same time, since the operations in the encoder are mostly 1×1×1 convolution,
the number of parameters just increases a little bit.

To further increase the model’s discriminative capacity, we also adopt the multi-
scale deep supervision strategy as in [14] after feature fusion at each stage.

2.3 Boundary Delineation with Soft Contour Constraint
In mammal visual system [3], contour delineation closely correlates with object seg-
mentation. To incorporate the knowledge to improve the segmentation accuracy, we
integrate the task of contour detection with the task of segmentation, assuming that
introducing a task of contour detection can help guide the network to concentrate
more on the boundaries of organ regions, thus helping overcome the adverse effect
of low tissue contrast. In this paper, as shown in Fig. 2, two boundary detection
tasks are added to the end of the network as auxiliary guidance.

To extract the contour for training, we first delineate the boundaries of different
organs by performing Canny detector on the ground-truth segmentation. For the
organs with clear boundaries (i.e., bladder and rectum in our case), we model the
problem as a classification problem. However, due to the potential sample imbalance
problem, we propose using focal loss to alleviate such an issue, as shown in Eq. 5.

Lcboundary = −
∑

h

∑
w

∑
t

∑
c∈csets

I{Yh,w,t,c}(1− p̂ (Xh,w,t; θ))γ (1− p̂ (Xh,w,t; θ))
(5)

Note that, for the regions with blurry boundaries (i.e., prostate in our case),
the voxels near the boundaries look almost the same. As a result, it will be more
reasonable to assign soft labels (instead of hard labels) around the ground-truth
boundaries. Thus, we can formulate the blurry-boundary delineation task as a
soft classification problem, which estimates the probability of each voxel being
on the organ boundaries. Then, for these blurry boundaries, we further exert a
Gaussian filter (with a bandwidth of δ, i.e., empirically set to 3 in our study)
on the obtained boundary map. In other words, for each voxel, we generate an
approximate probability belonging the blur boundary of an organ. Hence, we can
formulate soft classification as a soft cross-entropy loss function as defined in Eq. 6.

Lbboundary = −
∑

h

∑
w

∑
t
ph,w,t (1− p̂ (Xh,w,t; θ)) (6)

2.4 Implementation Details
Pytorch1 is adopted to implement our proposed method shown in Fig. 2. The code
can be obtained by this link2. We adopt Adam algorithm to optimize the network.
The input size of the segmentation network is 144× 144× 16. The network weights
are initialized by the Xavier algorithm, and weight decay is set to be 1e-4. For
the network biases, we initialize them to 0. The learning rate for the network is
initialized to 2e-3, followed by decreasing the learning rate 10 times every 2 epochs
during the training until 1e-7. Four Titan X GPUs are utilized to train the networks.
1 https://github.com/pytorch/pytorch
2 https://github.com/ginobilinie/SemGuidedSeg
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3 Experiments and Results

Our pelvic dataset comprises 50 prostate cancer patients from a cancer hospital,
each accompanied by a T2-weighted MR image and its corresponding manually-
annotated label map created by medical experts. Specifically, the prostate, bladder,
and rectum in all MRI scans have been manually segmented, serving as ground
truth for evaluating our segmentation method. These images were acquired using
3T MRI scanners. The image size is mostly 256× 256× (120 ∼ 176), and the voxel
size is 1 × 1 × 1 mm3. A typical example of the MR image and its corresponding
label map are given in Fig. 1.

We employ a five-fold cross-validation approach to evaluate our method. In each
fold, we randomly select 35 subjects as the training set, 5 subjects as the validation
set, and the remaining 10 subjects as the testing set. Unless explicitly mentioned, all
reported performance metrics are evaluated on the testing set. For evaluation, we
utilize the Dice Similarity Coefficient (DSC) and Average Surface Distance (ASD)
to measure the agreement between the manually and automatically segmented label
maps.

3.1 Comparison with State-of-the-art Methods
To demonstrate the advantage of our proposed method, we also compare our
method with other three widely-used methods on the same dataset as shown in
Table 1: 1) SSAE [1], 2) UNet [9], 3) SResSegNet [14].

Result: Sub1_slice53/ sub4_slice93

UNet SResSegNet Proposed UNet SResSegNet Proposed

UNet SResSegNet Proposed Ground Truth

(c)SSAE SSAE

(b)(a)

SSAE

(c)

Fig. 4: Visualization of pelvic organ segmentation results by four methods. In (a)
and (b), orange, silver and pink contours indicate the manual ground-truth segmen-
tations, while yellow, red and cyan ones indicate automatic segmentations. (a) Clear
boundary case, (b) blurry boundary case, and (c) 3D renderings of segmentations.

Table 1: DSC and ASD on the pelvic dataset by four different methods.
Method DSC ASD

Bladder Prostate Rectum Bladder Prostate Rectum
SSAE .918(.031) .871(.042) .863(.044) 1.089(.231) 1.660(.490) 1.701(.412)
UNet .896(.028) .822(.059) .810(.053) 1.214(.216) 1.917(.645) 2.186(0.850)
SResSegNet .944(.009) .882(.020) .869(.032) .914(.168) 1.586(.358) 1.586(.405)
Proposed .975(.006) .932(.017) .918(.025) .850(.148) 1.282(.273) 1.351(.347)

Table 1 quantitatively compares our method with three state-of-the-art seg-
mentation methods. We can see that our method achieves better accuracy than the
other state-of-the-art methods in terms of both DSC and ASD. It is worth noting
that our proposed method can achieve much better performance for the blurry-
boundary organ (i.e., prostate), which indicates the effectiveness of our proposed
network components for blurry boundary delineation.
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We also visualize some typical segmentation results in Fig. 4, which further show
the superiority of our proposed method, especially for the blurry regions around
the prostate.

3.2 Impact of Each Proposed Component
As our method consists of several novel proposed components, we conduct empirical
studies below to analyze them.
Impact of Proposed SG Module: As mentioned in Sec. 2.2, we propose a
semantic-guided encoder feature learning module to learn more discriminative fea-
tures in shallow layers. The effectiveness of the SG module is further confirmed by
the improved performance, e.g., 2.40%, 4.41% and 2.8% performance improvements
in terms of DSC for bladder, prostate, and rectum, respectively, compared with the
UNet with multi-scale deep supervision.
Relationship with Similar Work: Several previous work are proposed to use
attention mechanism [7, 10] to enhance the encoder-decoder networks. However,
our work is different from them mainly in the follow way: We propose to use highly
semantic information from the decoder to explicitly guide the building of attention
mechanism, so that we can efficiently learn the encoder features. To further com-
pare them, we visually present the three typical learned feature maps (selected by
clustering) of a certain layer (i.e., combined layer) in different networks at a certain
training iteration (i.e., 4 epochs). The methods include FCN [6], UNet [9], UNet
with concurrence SE module [10] (ConSEUNet), attention-UNet [7] (AttUNet) and
our proposed one(SGUNet). The visualized maps are in Fig. 5.Visualization of feature maps

(a) FCN (b) UNet

(e) SGUNet

(c) ConSEUNet (d) AttUNet

(f) (g) 

(h) 

Fig. 5: (a-e): Visualization of three typical learned feature maps of a certain layer
by five different networks. (f) and (g) are the corresponding input MRI and the
MRI overlaid by the ground-truth contours. (h) is the performance gain in terms of
DSC with different strategies towards the UNet with multi-scale deep supervision.

Fig. 5(a-e) illustrates that the raw encoder-decoder networks (i.e., FCN and
UNet) struggle to handle blurry boundary cases effectively. Attention-based net-
works produce higher semantic maps with improved localization information. No-
tably, our proposed method achieves more precise boundaries due to explicit seman-
tic guidance. Additionally, our method demonstrates faster convergence compared
to other approaches. Furthermore, the quantitative analysis in Fig. 5(h) is consis-
tent with the the conclusion of qualitative analysis.
Impact of Soft Contour Constraint: As introduced in Sec. 2.3, we apply a
hard contour constraint for clear-boundary organs while a soft contour constraint
for the blurry-boundary organs. Since hard contour constraint is a widely adopted
strategy, we directly compare our proposed soft contour constraint with the case
of using hard constraint. With soft constraint on the prostate, we can achieve a
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slight performance gain such as 0.2% in terms of DSC; but we can achieve more
performance gain in terms of ASD (0.8%), which is mainly because the soft contour
constraint can help more accurately locate the blurry boundaries.

3.3 Validation on Extra Dataset

To show the generalization ability of our proposed algorithm, we conduct additional
experiments on the PROMISE12-challenge dataset [5]. This dataset contains 50
labeled subjects where only prostate was annotated. We can achieve a high DSC
(0.92), small ASD (1.57) in average based on five-fold cross validation. As for the
extra 30 subjects’ testing dataset whose ground-truth label maps are hidden from
us, the performance of our proposed algorithm is still very competitive (we are
ranking in the top 6 among 290 submission with an overall score of 89.46. The
details can be available via this link3) and our solution is compared to the state-
of-the-art methods on the 30 subjects’ testing dataset [14, 16]. These experimental
results indicate a very good generalization capability of our proposed algorithm.

4 Conclusion

In this paper, we have introduced a novel semantic-guided encoder feature learn-
ing strategy aimed at capturing highly semantic and rich resolution information
features to address the challenge of blurry-boundary delineation. Our SG module
enhances the raw skip connection of encoder-decoder models by amplifying discrim-
inative features while attenuating less informative ones. Additionally, we propose a
soft contour constraint to model blurry-boundary detection and an ordinary hard
contour constraint for clear-boundary detection. This approach has been demon-
strated to effectively improve boundary localization and mitigate inter-class errors.
By integrating all these proposed components into the network, our final framework
has shown significant improvements compared to other methods in terms of both
accuracy and robustness, as validated on both the original and extra dataset.
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