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Abstract. Medical imaging plays a critical role in various clinical appli-
cations. However, due to considerations such as cost and risk, the acqui-
sition of certain image modalities can be limited. To address this issue,
many cross-modality medical image synthesis methods have been pro-
posed. Nevertheless, current methods struggle to accurately model hard-
to-synthesize regions (e.g., tumor or lesion regions). To overcome this
challenge, we propose a simple yet effective strategy: a dual-discriminator
(dual-D) adversarial learning system. In this system, 1) a global dis-
criminator (global-D) provides an overall evaluation of the synthetic
image, and 2) a local discriminator (local-D) performs a dense evalu-
ation of the synthetic image’s local regions. Additionally, we introduce a
difficult-region-aware attention mechanism that enhances the modeling
of hard-to-synthesize regions (e.g., tumor or lesion regions) based on the
local-D. Experimental results demonstrate the robustness and accuracy
of our proposed method in synthesizing target images from correspond-
ing source images. Specifically, we evaluated our method on two datasets:
i.e., 1) generating T2 MRI from T1 MRI for brain tumor images, and 2)
generating CT from MRI. Our proposed method outperforms state-of-
the-art techniques in both datasets and tasks. Furthermore, our proposed
difficult-region-aware attention mechanism proves effective in generating
more realistic images, particularly in the hard-to-synthesize regions.

1 Introduction

The importance of medical imaging for clinical diagnosis, disease treatment,
and medical research has steadily increased over the last few decades. Multiple
imaging modalities, such as magnetic resonance imaging (MRI) and computed
tomography (CT), provide complementary information, which is essential for
the comprehensive assessment of complex diseases, whether in diagnostic exam-
inations or as part of medical research trials. Different imaging modalities are
often required at various stages of disease diagnosis and treatment. However, in
practice, it is not always feasible to obtain all necessary modalities. Therefore, it
is highly beneficial to explore solutions for synthesizing the modality of interest
(or target) from the available source modalities.

In the past, many researchers have attempted to directly synthesize high-
quality medical modality images. However, this task is often challenging due to
several issues. First, the mapping from the source modality to the target modality
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Fig. 1. Two pairs of corresponding source and target images from the same subjects.
(a) shows T1 MRI/T2 MRI brain tumor images; (b) shows MRI/CT brain images.

(or its inverse) is typically complex and ill-posed. Second, different modalities
can exhibit significantly different image appearances, e.g., MRI and CT as shown
in Fig. 1(b). Third, certain regions in the image (such as tumor in Fig. 1(a))may
have completely different image contrasts and appearances. Nonetheless, there
often exist potential connections, or even highly nonlinear relationships, between
different modalities that can be leveraged for synthesizing one modality from
another.

Convolutional neural network (CNN) offers a new approach for learning
highly nonlinear relationships by employing multiple-layer mapping [1, 3–5, 7, 8,
10–15]. For example, Huang et al. [4] proposed a method to simultaneously per-
form super-resolution and cross-modality medical image synthesis using weakly-
supervised joint convolutional sparse coding. Similarly, Nie et al. [7] introduced
a supervised adversarial learning framework with gradient difference loss to syn-
thesize CT images from MRI scans. Although the training of the aforementioned
image synthesis methods can achieve good performance in most cases, they often
fail to produce reasonable results in certain situations, such as in tumor regions
(as shown in Fig. 1(a)). This is because the training process tends to be domi-
nated by the majority of samples or regions that are easier to synthesize, such as
normal tissue regions, while neglecting the minority of tumor or lesion regions,
which are crucial biomarkers in clinical diagnosis. Therefore, it is essential to
develop a method that can better model tumor and lesion regions in medical
image synthesis.

In this work, we propose a dual-discriminator adversarial learning framework
with a difficult-region-aware attention mechanism to address the aforementioned
issues. Specifically, in addition to the regular CNN-based discriminator, we in-
troduce a dense fully convolutional network (FCN) as the local discriminator to
assess the difficulty level of each local region in image synthesis. More impor-
tantly, we further propose a difficult-region-aware attention mechanism to better
model the hard-to-synthesize regions (i.e., tumor regions). Experimental results
demonstrate that the proposed method can effectively synthesize target images
with significantly improved modeling capacity for the hard-to-synthesize regions.
To the best of our knowledge, this is the first work to address the challenge of
hard-to-synthesize regions in cross-modality image synthesis tasks.
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Fig. 2. Architecture used in the deep supervised generative adversarial setting to syn-
thesize target image. This framework contains one generator and two discriminators.
A difficult-region-aware attention mechanism is also included in the framework.

2 Methods

To address the aforementioned issues and challenges, we propose a deep con-
volutional adversarial network framework that involves adversarial training of
the generator (UNet) using dual discriminators, namely, a CNN as the global
discriminator and an FCN as the local discriminator. Fig. 2 illustrates the entire
framework.

2.1 UNet for Medical Image Synthesis

UNet [9], an evolutionary version of FCN, incorporates both high-resolution and
rich-semantic feature maps to enhance localization accuracy, making it widely
used for segmentation and reconstruction in medical image analysis. In this
paper, we adopt UNet as the image generator for medical image synthesis because
it can alleviate the loss of spatial details and recover fine-grained details in dense
predictions, compared to FCN.

As mentioned in the Introduction section, typically an L1/L2 loss is used to
train the network as below,

LG(X,Y ) = ‖Y −G(X)‖p (1)

where Y is the ground-truth target image, and G(X) is the generated target
image from the source image X by the Generator network G and p is 1 or 2.

2.2 Adversarial Learning for Medical Image Synthesis

To enhance the perceptual quality of the generated target images, we propose us-
ing adversarial learning to improve the performance of UNet within local regions
of synthetic images. Our adversarial network comprises a global discriminator
(denoted as D1 in Fig. 2), typically implemented with a CNN, which distin-
guishes between the real target image and the generated one as a whole, and
also a local discriminator (denoted as D2 in Fig. 2), typically implemented with
an FCN, which discerns between synthetic and real images at the voxel level.
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It’s worth noting that in D2 each element of the dense outputs corresponds to
the quality of the synthesized local region around the respective voxel.
Global Adversarial Learning: In our study, we follow the WGAN-GP [2]
to form the global discriminator (D1) due to its powerful adversarial learning
capacity. Concretely, the loss function for D1 can be defined as:

LD1(X,Y ) = Ex[D1(G(X))]− EY [D1(Y )] + λEX̂ [(
∥∥∥5X̂D1(X̂)

∥∥∥
2
− 1)2] (2)

where X is the source input image, Y is the corresponding target image, G(X)
is the estimated image by the generator, and X̂ is uniformly sampled along
straight lines among synthetic and real samples. And λ is a constant weighting
hyper-parameter.

The global adversarial loss term used to train G is defined as below.

LG ADV 1(X,Y ) = −Ex[D1(G(X))] (3)

With the above definitions, D1 can globally distinguish the real target image
from the synthetic target data generated by G. At the same time, G aims to
produce more realistic target images for confusing D1. The details of D1 follows
the suggestions in [2].
Local Adversarial Learning: To obtain the local confidence information of
how well each local region is synthesized, we formulate the training objective of
the local discriminator as the summation of binary cross-entropy loss over the
image domain, as given in Eq. 4. Note that the reason we choose to cross entropy
loss instead of W-distance, is to apply sigmoid function to the dense outputs for
obtaining the probability that can be used as confidence value. Here, we use G
and D2 to denote the generator and local-D networks, respectively.

LD2(X,Y; θD2) = LBCE(D2(Y, θD2),1) + LBCE(D2(G(X), θD2),0), (4)

where LBCE is binary cross-entropy loss. X and Y represent the input image
and its corresponding real target image, respectively. θD2 is network parameters
for the local-D network.

For training the generator network, besides the L1/L2 loss defined in Eq. 1
and the global adversarial learning loss defined in Eq. 5, the local adversarial
loss (“ADV”) to improve G and fool D2 can be defined below:

LADV 2 (X, θG) = LBCE (D2 (G (X; θG)) ,1) (5)

The training of the two networks is performed in an alternating fashion. First,
D is updated by taking a mini-batch of real target image and a mini-batch of
generated target image (corresponding to the output of G). Then, G is updated
by using another mini-batch of samples including sources and their corresponding
ground-truth target images.

2.3 Region-attention based Adversarial Difficulty Learning
Due to the inhomogeneous characteristics and irregular distribution of medical
images, certain regions within the images are typically more challenging to syn-
thesize effectively. Consequently, there is a strong need to develop a model that
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can accurately depict these hard-to-synthesize regions. As the local discrimina-
tor can provide confidence information regarding the synthesis quality of each
local region, we can leverage this information to prioritize attention towards
the hard-to-synthesize regions , such as tumors and lesions, ensuring they are
better modeled. To achieve this, we propose a difficulty-region-aware attention
mechanism designed to accurately measure the difficulty level of synthesizing
different regions. Specifically, we design a difficulty-region-aware L1/L2 loss by
using region-level attentions from the adversarial local confidence map.

The voxel-level difficulty-region-aware attention from the confidence map
(M) is formulated (based on Eq. 1) as below:

LAttG(X,Y ) = F � ‖Y −G(X)‖p (6)

where � is the element-wise multiplication and F = (1−M)
β

, and β is the
voxel-level attention parameter. Note, F here works as a scaling factor, which
is used to largely suppress the contribution of easy-to-synthesize regions to the
training loss and emphasize the hard-to-synthesize regions.

With the difficult-region-aware L1/L2 loss in Eq. 6, we can pay more at-
tention in the less confident (i.e., hard-to-synthesize) regions and thus better
model them (e.g., tumor and lesion). Although our proposed idea is simple, the
adversarial difficulty-region-aware attention mechanism presents an opportunity
to effectively utilize voxel-wise focal loss in a regression context. It’s important
to note that, thus far, there have been few effective works proposed for attention
mechanisms in regression networks.
Total Loss for Training Generator: To this end, the total loss for training
generator includes the attention based L1/L2 loss, the global adversarial loss,
and the local adversarial loss, which can be summarized below Eq. 7.

LG = LAttG + λ1LG ADV 1 + λ2LG ADV 2 (7)

The above training loss could encourage G to generate target images with voxel-
wise correspondence to real target image, and also best fooling the discriminators
both globally and locally.

2.4 Training Details

The discriminator D1 is a typical CNN including three stages of convolution,
BN, ReLU and max pooling, followed by one convolutional layer and three fully
connected layers (where the first two use ReLU as activation functions). The
filter size is 3 × 3, the numbers of the filters are 32, 64, 128, respecitvely, and
256 for the convolutional layers, and the numbers of the output nodes in the
fully connected layers are 512, 128 and 1, respectively. The dense discriminator
D2 is a typical FCN with three down-sampling. All networks were trained using
the Adam optimizer. The code is implemented using the pytorch library1, and
it will be publicly released upon acceptance of this paper.
1 https://github.com/pytorch/pytorch
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3 Experiments and Results

We selected the BRATS dataset for evaluating our proposed method, which is a
publicly available dataset comprising MRI scans from brain tumor patients [6].
The dataset consists of a total of 354 pairs of T1 MRI and T2 MRI scans.
Among these, 200 subjects were allocated for training, 60 for validation, and the
remaining 94 for testing purposes.

To demonstrate the advantage of our proposed method in terms of synthesis
accuracy, we compare it with three widely-used approaches: atlas-based, FCN,
UNet, and sGAN.

3.1 Impact of Proposed Dual-Discriminator Strategy

To demonstrate the effectiveness of our proposed dual-discriminator strategy,
we conducted experiments comparing three methods on the BRATS dataset:
sGAN with a global discriminator (sGAN-1), sGAN with a local discrimina-
tor (sGAN-2), and our proposed dual-discriminator strategy (sGAN-dual). The
PSNR values obtained were 27.3 dB, 27.6 dB, and 28.3 dB for sGAN-1, sGAN-
2, and sGAN-dual, respectively. It’s important to note that these results were
achieved using the ordinary L1 loss for the generator. Furthermore, besides inter-
preting our proposed dual-discriminator strategy as local and global adversarial
constraints, we can view it from another perspective. Specifically, the use of
our dual-discriminator strategy can effectively mitigate the issue of adversarial
gradient vanishing, thereby enhancing the stability and efficacy of adversarial
learning.

3.2 Impact of Difficult-Region-Aware Attention Mechanism

To demonstrate the impact of our proposed difficult-region-aware attention mech-
anism, we conduct experiments to compare the performance with and without
this mechanism on the BRATS dataset. The experimental results indicate an
improvement of 0.2 dB in terms of PSNR when employing our proposed atten-
tion mechanism. Furthermore, to delve deeper into the effect of our proposed
mechanism, we focus on evaluating the synthesis performance solely on tumor
regions. By utilizing manually segmented tumor regions from this dataset, we
compute the PSNR specifically on tumor regions within the testing set, achieving
an average improvement of 0.6 dB.

We also visualize results in Fig. 3. We can clearly see that the generated
image by using our proposed difficult-region-aware attention mechanism (i.e.,
‘dual-D+attention’) could recover much more details, compared to the results
without using our proposed mechanism (i.e., ‘dual-D’), especially for the tumor
regions.

In order to gain a deeper understanding of why the difficult-region-aware
mechanism is effective, we analyze the confidence map generated by the local
discriminator (i.e. D2). Our analysis shows that initially, tumor regions are eval-
uated as poorly synthesized, as indicated by the low local confidence scores.
Consequently, more attention is directed towards these tumor regions during
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Fig. 3. Visual evaluation of our proposed difficult-region-aware attention mechanism.
Using our proposed mechanism, the respective results (third column) is more similar
to the real target T2 MRI (fourth column), compared to the case without using our
proposed mechanism (second column).

the subsequent training stages of the generator network. As a result, by the end
of the training process, the generator network learns to better synthesize tumor
regions as well.

3.3 Comparison with Other Methods

For a qualitative comparison of the image synthesis results obtained by different
methods, we present synthetic target images alongside their corresponding real
target images in Fig. 4. It is evident that the proposed algorithm excels in
preserving continuity, coherence, and smoothness in the synthetic results, owing
to the utilization of both global and local adversarial learning constraints across
the image patches. Notably, the tumor region of generated T1 MRI can recover
much more details than other methods, closely resembling the real T2 MRI. We
attribute this improvement to the difficult-region-aware attention mechanism,
which prioritizes regions recognized as challenging to synthesize, such as tumor
regions.

FCN OursUNet sGAN CTMRI

T1 MRI UNet sGAN Ours T2 MRIFCN

(a)

(b)

Fig. 4. Visual comparison of results by different methods for two cases of application:
(a) T1 MRI to T2 MRI synthesis and (b) MRI to CT synthesis. Red arrows indicate
poorly-synthesized regions.
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We also quantitatively compare the predicted results in Table 1, in terms of
both PSNR and MAE. Our proposed method outperforms all other competing
methods in both metrics. Fig. 4(a) shows synthesis results on BRATS dataset
(with brain tumors) by different methods. It can be seen that our result is more
consistent with the real T2 MRI (right).

Table 1. Average MAE and PSNR on 94
testing subjects from the BRATS dataset.

Method MAE PSNR

FCN 34.5(8.6) 25.0(2.3)
UNet 28.8(6.9) 26.2(1.8)
sGAN 27.0(5.7) 26.0(1.5)
Ours 25.8(5.2) 27.5(1.4)

Table 2. Average MAE and PSNR on
16 subjects from the brain dataset.

Method MAE PSNR

FCN 24.4(15.1) 22.7(3.2)
UNet 21.8(12.8) 26.7(2.1)
sGAN 20.4(11.2) 27.3(1.7)
Ours 18.4(10.3) 28.6(1.8)

To show the generalization ability of our proposed method, we also evaluate
it on another brain dataset for synthesizing CT from MRI. Fig. 4(b) shows CT
synthesis results by different methods, and Table 2 gives quantitative comparison
results. It is clear that our proposed method can work better than the state-of-
the-art methods, demonstrating the good generalization of our proposed method
to other datasets for other image synthesis tasks.

4 Conclusions

We have introduced dual discriminators within an adversarial learning frame-
work, comprising a global discriminator for overall evaluation and a local dis-
criminator for region-wise evaluation, to address critical challenges in medical
image synthesis. Additionally, we have proposed a difficult-region-aware atten-
tion mechanism to effectively handle hard-to-synthesize regions (i.e., tumor and
lesion). Our proposed model has been applied to two tasks: 1) synthesizing T2
MRI from corresponding T1 MRI and 2) synthesizing brain CT images from their
corresponding MR images. Experimental results demonstrate that our method
outperforms three state-of-the-art methods. Furthermore, our proposed difficult-
region-aware attention mechanism enhances the synthesis of hard-to-synthesize
regions. Lastly, we tested the generalization of our proposed method across differ-
ent image synthesis tasks using the same framework, achieving good performance
consistently.
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