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ABSTRACT
A long-standing technique to interfere with theft of sensitive data 
by its intended users is permitting these insiders only remote access 
to the data via a thin client. Even allowing only remote access is 
inadequate, however, to counter an insider willing to reconstruct 
the data from the graphical output, in the limit by photographing 
the data on-screen and applying automatic character recognition 
to these photographs offline. In this paper we propose and evaluate 
a system, called Snowman, that accurately monitors the amount 
of sensitive data output to a client. To conduct this monitoring 
without slowing the interactive user session, leakage is concurrently 
tracked in a replica of the application execution. This, in turn, 
introduces a key technical challenge that Snowman solves, namely 
identically replicating execution of an unmodified Linux binary 
while also performing efficient multi-label taint-tracking on it. We 
show through empirical measurements with a word processor, a 
spreadsheet program, and a code editor that Snowman induces little 
overhead on interactive user sessions and easily differentiates data-
access patterns induced by normal usage and sufficiently aggressive 
data theft with reasonable responsiveness.
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1 INTRODUCTION
Data theft by insiders is a threat that is especially difficult to prevent, 
as it involves misuse of permissions that the insider presumably 
must be given to perform his/her duties in the organization. It is 
thus not surprising that such data thefts are so common; e.g., in 
healthcare, insider threat is the most common cause of data leakage, 
accounting for 58% of incidents [47]. And, of course, insiders were 
behind some of the highest profile data breaches of U.S. government 
data, with the Manning [52] and Snowden [49] cases being two
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exemplars. All U.S. executive agencies and military departments are
now required “to monitor user activity on all classified networks in
order to detect activity indicative of insider threat behavior” [39,
§H.1], and a National Insider Threat Task Force has been established
“to develop a Government-wide insider threat program for deterring,
detecting, and mitigating insider threats” [2].

An approach to address data theft by insiders is to make sensi-
tive data available to users only by secure remote access. In this
approach, programs execute on sensitive data only on computers
trusted by the organization, while users are permitted to inter-
act with those programs/data only remotely, perhaps from a less-
trusted (even user-owned) computer or a “thin” client having no
persistent storage of its own. While this approach has been prac-
ticed for decades in various forms (e.g., [54]), a current product
embodying this approach is Citrix Virtual Apps and Desktops [1],
formerly marketed as XenApp and XenDesktop. The deployment
of XenDesktop by Osaka Gas [3] provides an illustrative example
of the data security benefits that this approach can offer.

Despite the data-protection benefits of remote-only access, this
approach is fundamentally limited by the possibility that the user
screenshots sensitive content or even photographs it using another
device. Distribution of such images can be discouraged through
the introduction of watermarks (e.g., by varying screen lumines-
cence [23]). However, the ability to attribute the data leak to an
individual after the data is already leaked might be ineffective in
deterring the leak. Moreover, since these watermarks must not in-
terfere with the user experience, text data can be recovered, sans
watermarks, by applying optical character recognition to the im-
ages [14]. For small text data files (e.g., a Word file that fits on one or
two screens), it seems that there is little hope for defending further
against such insiders.

The premise of this paper, however, is that for large amounts
of sensitive text—e.g., large documents, databases, or codebases—
an effort to quickly display significant amounts of that data to a
computer screen to record it (e.g., using another device) is likely to
induce patterns of accessing that data that departs from the norm for
interacting with it for legitimate purposes. Combined with remote-
only access, this observation might be leveraged to detect data
theft as it is occurring. In this paper, we propose a system, called
Snowman, to accomplish this goal. Roughly speaking, Snowman
monitors the transmission of sensitive data by a program to a remote
client via a graphical user interface, and raises an alert when the
rate of transmission exceeds what is typical for interacting with
that data.
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A central challenge in this approach is how to measure the
amount of sensitive data transmitted to a remote client. While the
total volume of GUI data transmitted to the remote client is an
upper bound, such a bound is very coarse. For example, numerous
ways of interacting with a program—e.g., scrolling a document a
few lines, up and down repeatedly—would result in an ever growing
estimate of leakage, even though only the same few lines of data are
being rendered to the user’s screen. Snowman therefore employs
taint analysis (e.g., [15, 16, 37]) to track which sensitive bytes taint
each byte output to the remote user. By tracking the cumulative set
of sensitive bytes that taint the output to the remote user, Snowman
can improve the accuracy of this upper bound considerably, and
even determine which sensitive bytes might have been leaked.

Unfortunately, multi-label (i.e., per sensitive byte) taint analy-
sis on unmodified binaries is very expensive, incurring a typical
overhead of 7× or more [29]. To ensure that this overhead does
not interfere with the user experience, Snowman thus performs
taint analysis only on a replica of the program that replays the
program’s execution alongside the program instance that interacts
with the user. This replica lags behind the user-facing instance due
to the overhead of taint analysis, but as we will show, it need not
lag by much for typical user behavior. Herein lies a core technical
challenge that we solve in Snowman, namely how to efficiently con-
duct taint analysis on a replica while forcing the replica to execute
identically to the original, user-facing execution.

Replication systems (e.g., [8, 40]) need to record asynchronous
signals and scheduling events, and to replay them to the replica
at the exact same execution points as in the original execution.
Those systems rely on CPU hardware performance counters to
measure the number of instructions executed by the program to
locate the right execution points at which to replay them. However,
conventional taint analysis tools [11, 29] use dynamic binary instru-
mentation to insert analysis routines into the original code blocks,
which would break the measurement of the replica’s execution
and so cause the replica to diverge from the original. Snowman
employs a novel architecture that conducts taint analysis in the
kernel without disturbing the performance counter measurements.
To reduce the overhead of taint analysis, Snowman employs vari-
ous optimizations, such as excluding application basic blocks from
in-kernel analysis where it can be inferred that they have no tainted
operands, caching instruction decoding results, copy-on-write taint
propagation, and garbage collection of taint tags corresponding to
already-leaked data.

We have implemented Snowman to work on unmodified x86-64
Linux binaries and off-the-shelf hardware. We evaluated Snowman
on three widely used GUI programs: LibreOfficeWriter (a word pro-
cessor), LibreOffice Calc (a spreadsheet program), and Gedit (a code
editor). Our evaluation shows that Snowman introduces only mod-
erate overhead on common user actions and performs better than
the Pin “null tool”, which serves as a baseline for many previous
taint analysis systems [26, 29, 33, 34] and any other Pin-based [32]
solutions. The evaluation also demonstrates that Snowman can
easily distinguish normal user behaviors from ones reflecting data
copying in all tested programs, by analyzing the sensitive data
leakage patterns.

To summarize, the contributions of our paper are as follows:

• To our knowledge, we provide the first system designed to
detect copying of graphical output to reconstruct sensitive
data, e.g., to exfiltrate it later. Rather than focusing on wa-
termarking to assign responsibility for the theft after the
released data is recovered, Snowman instead seeks to detect
the copying while it is occurring.

• We detail the design of Snowman, which performs multi-
label taint-tracking only on a replica of the user-facing exe-
cution, to minimize the performance impact to the interac-
tive user experience. In doing so, Snowman simultaneously
achieves exact replication of the user-facing execution while
performing multi-label taint tracking on it, without modifi-
cation to the program binary. Central to its efficiency are a
variety of optimizations that render it far more lightweight
than straightforward solutions (e.g., based on Pin [32]).

• We show through evaluations of Snowman on a fully-featured
word processor, spreadsheet program, and code editor, that
sufficiently aggressive copying can easily be differentiated
from normal usage examples based on the rate of GUI leak-
age of sensitive file output. We also show that Snowman
supports copying detection with minimal penalties to the
responsiveness observed by the user, and with modest delays
from the time at which the leakage occurs.

The rest of this paper is organized as follows. We summarize
related work in Sec. 2 and describe the design and implementation
of Snowman in Sec. 3. In Sec. 4, we evaluate Snowman in terms
of its performance on various user actions and its capability to
differentiate malicious data-access patterns from normal ones. We
discuss remaining challenges and possible extensions in Sec. 5, and
conclude the paper in Sec. 6.

2 RELATEDWORK

Thin-client systems. In a thin-client system, the server renders
graphical data from data source and transmits the generated graph-
ical data to the client over the network. The client doesn’t have
persistent storage and can only display graphical data and take
user inputs. Baratto et al. [4] proposed a high-performance thin-
client architecture by directly exposing the video hardware to the
display system. Yang et al. [54] measured the performance of six
popular thin-client systems and explained the performance impact
of the underlying remote display protocols. Shi et al. [44] gave a
survey on various 3D rendering thin-client systems. Orthogonal to
the previous work, our paper focus on improving security of the
thin-client system by offering a generic solution to monitoring the
sensitive bytes leaked to the client.

Anomaly detection. Here we treat a malicious insider exfiltrating
a large volume of sensitive data from an organization as an anoma-
lous behavior to be detected using anomaly-detection techniques,
of which many have been proposed (see, e.g., [13]). In anomaly-
detection systems, various events of the user and the running pro-
grams are logged. The logs might include, e.g., system calls, shell
commands, file reads and writes, and others. These logged data are
then provided to the feature-based detection algorithms, which can
be based on machine learning [38], data mining [53], statistics [30],
or information theory [31], to identify anomalies.
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The main contribution of Snowman is offering a novel system
architecture that (i) restricts user’s interaction with the sensitive
files to the GUI interface in a thin client and (ii) accurately monitors
the sensitive bytes leaked to the user. Snowman can generate logs
containing the indices of the leaked bytes and the timestamps of
the leakage events, which can be used as features by the anomaly-
detection algorithms. This fine-grained sensitive data leakage pat-
tern gives more insight into the user’s intent compared with coarser
patterns of access to files or file blocks. In this sense, Snowman
provides a new type of feature for anomaly-detection systems to an-
alyze, though our goal here is not to develop new anomaly detection
algorithms ourselves.

Taint analysis. The conventional approach to monitor sensitive
information flow is taint analysis (e.g., [15, 16, 37]). Taint analysis
systems attach taint tags to the memory and register locations
whenever the program consumes sensitive data. Along with the
execution of the program, the taint tags are propagated from one
location to another. Since the taint propagation rules are dictated
by the instruction semantics, taint analysis can accurately monitor
how the sensitive data is transformed and transferred, and whether
it is leaked through the program’s execution.

Taint analysis can be implemented with dynamic binary instru-
mentation (e.g., [11, 26, 29, 33, 34, 43]) or virtualization (e.g., [15,
24, 42]). In inlined taint analysis systems [11, 15, 24, 29, 42, 43],
the taint analysis logic is interleaved with the analyzed program’s
execution flow and so introduces substantial overhead. For example,
libdft, a state-of-art taint analysis system, imposes 7.06× slowdown
to the Firefox browser even after employing various optimization
techniques [29]. Some recent systems [26, 33, 34] aim to reduce
overhead of the analyzed program by decoupling taint analysis
from the program’s execution. These systems record the control
flow and memory access information with Pin, a dynamic binary
instrumentation tool, and run the taint analysis logic in a separate
thread with the recorded information. Snowman also decouples
taint analysis from the execution of the monitored program, by
replicating the program’s execution and conducting taint analysis
only on the replica. Since Snowman doesn’t do heavyweight binary
instrumentation, it adds less overhead to the monitored execution
compared with the Pin “null tool" (as will be shown in Sec. 4) and
hence all other Pin-based tools.

Some systems implement taint analysis in hardware [17, 28, 48,
51] and usually have better performance than the software based
systems. However, custom hardware for this purpose is not widely
deployed. Snowman has better applicability since it works on off-
the-shelf hardware and unmodified binaries.

Replicated execution. Replicating the execution of a multi-
threaded program in multicore systems is a challenging problem.
Many sources of nondeterminism can lead to divergence of the repli-
cated execution. The first type of nondeterminism is caused by the
program’s communication with the system or other programs via
systems calls, e.g., read(), or instructions, e.g., RDTSC. Replication
systems (e.g., [8, 40]) usually address this type of nondeterminism
by recording the nondeterministic inputs to the original execu-
tion and replaying the recorded values to the replica. The second
type of nondeterminism is caused by shared-memory interactions

among threads or processes. To address this type of nondetermin-
ism, the approaches taken by replication systems include replicating
all shared-memory accesses [9, 41]; scheduling one thread or pro-
cess at a time and replicating the scheduling decisions [35, 40, 46];
assuming the program is race-free and replicating the synchroniza-
tion events by instrumenting the synchronization library [5, 6, 18];
or applying a deterministic scheduling algorithm to remove the
nondeterminism in shared-memory interactions [7, 8, 19].

Replicating the program’s execution can be also achieved by
running the program in a virtual machine and replicating the exe-
cution of an entire virtual machine [12, 21, 22]. However, doing so
introduces unnecessary overhead of replicating the execution of the
operating system and other programs. There are also replication
systems [25, 36] relying on custom hardware to reduce overhead.
We adapted RR [40], an open-source tool from Mozilla, to imple-
ment Snowman’s replication subsystem. We chose RR because it
works on unmodified binaries and off-the-shelf hardware. Addition-
ally, RR doesn’t assume race-freedom of the replicated program,
and so programs with data races (e.g., programs using lock-free
data structures [50]) can be directly replicated by RR.

Replication and dynamic analysis. Several previous works [18,
20, 27, 41] explored the idea of combining replication and dynamic
analysis. Unlike Snowman, which replicates and analyzes the ex-
ecution of the program concurrently with the original execution,
these systems can replicate the previously recorded execution of
the program only after the program exits, to conduct analysis for de-
bugging, auditing, or attack provenance. In addition, the high over-
head caused by replicating every shared-memory interaction [41]
or replicating a virtual machine [20], as well as assuming race-
freedom [18, 27], do not fit our use cases.

3 SYSTEM DESIGN AND IMPLEMENTATION
3.1 Overview
In Snowman, GUI programs with permissions to access sensitive
files run in a remote server. A user employs her personal computer
to interact with the GUI programs over the network. The GUI
programs take user inputs, such as mouse clicks and keystrokes, do
computations, and deliver graphical outputs to the user computer.
In our threat model, the user computer is not trusted and the user
might intend to steal sensitive information. However, we assume
the server computer and all software running on the server are
trusted. The only channel where a user can get sensitive information
is the graphical outputs generated by the remote GUI programs.
Our system aims to accurately monitor the amount of sensitive file
information flowing from the remote server to the user computer
without affecting the normal usage of the GUI programs.

To accomplish this, Snowman replicates the execution of the
analyzed program and conducts taint analysis on the replica, to
minimize the impact of that analysis on the performance of the
original execution. Our system works on legacy x86-64 binaries
without requiring custom hardware or recompilation. Fig. 1 shows
the overall architecture of our system. The graphical user interfaces
of the program are displayed in the user computer (a thin client).
In the remote server, the replication engine creates and maintains a
replica for every thread and process of the monitored program. The
replicas maintain the exact same execution states as the original
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Figure 1: Snowman architecture: (1) communicate user in-
puts and graphical outputs (over the network); (2) record
program execution; (3) replicate program execution; (4)
monitor sensitive data leakage

threads and processes, including memory values, register values,
and control flows. The analysis engine conducts taint analysis on
the replicated processes by attaching and propagating taint tags
to monitor the sensitive information flow. There are many chal-
lenges in efficiently performing taint analysis and, at the same time,
faithfully replicating the original program’s execution. We will give
detailed descriptions of our system in the following sections.

3.2 Replication engine
The implementation of the replication engine is based on RR [40],
which is designed to record and replay multi-threaded Linux pro-
grams with low overhead, and is useful in debugging concurrency
bugs. Instead of replaying the whole execution after the program
exits, we adapt RR to run a replicated program side-by-side along
with the original program execution throughout its lifetime.

The core problem solved by RR is faithfully replicating the
execution of a multi-threaded program. In principle, if all non-
deterministic inputs (from the operating system to the application)
and events of the original execution are recorded and replayed
to the replica, the replicated execution should be the exact same
as the original one. RR runs in user-space and monitors the tar-
get program via the ptrace system call. RR can observe various
events of the monitored program including system calls and sig-
nals. Whenever a monitored process enters or exits a system call,
it is suspended and RR is notified. For system calls that spawn a
new process or thread, like fork() and exec(), RR creates a cor-
responding replicated process or thread and copies the original
memory and register state to the replica. For the system calls that
consume non-deterministic inputs from the operating system, such
as read() and gettimeofday(), RR records the inputs to the sys-
tem call from the original process and replays them to the replicated
process without actually executing the system call. RR also deals
with inputs from non-deterministic instructions, including RDTSC
and RDRAND, by emulating or rewriting those instructions.

Besides non-deterministic inputs to system calls and from non-
deterministic instructions, RR also needs to record and replay the
non-deterministic events. The first type of non-deterministic events
is scheduling events. Multiple threads of the same process run
concurrently and do computations on shared data, and so different
thread schedules could lead to different outcomes of the program.
Without replaying the scheduling events, the replica’s execution
could diverge. Another type of non-deterministic events is signals.
Signals usually interrupt the normal execution flow of the program.
If a signal handler is registered, it will be called to handle the arrived
signal. Since the signal handler could compute on data shared with
normal program code, similar to scheduling events, we have to
record and replay the signals to avoid divergence.

RR acts as a scheduler to the monitored program and only sched-
ules one thread at a time. By using a deterministic performance
counter of the Intel CPU, RR tracks the number of retired condi-
tional branches (RCB) and uses the RCB counts to mark the progress
of the program’s execution. Whenever a non-deterministic event
happens in the original program, RR records the timing, measured
by the RCB count, of that event, and replays this event in the exact
same execution point of the replica. RR instructs the CPU to fire
an interrupt after a specified number of conditional branches are
retired by the replica to control the timing of the event replay. If it
is a scheduling event, RR preempts the replicated threads to replay
the schedule. If it is a signal, RR emulates the execution of the signal
handler without delivering a real signal to the replica.

During the original execution of the program, RR records the
aforementioned data. Consumption of the recorded data is some-
times slower than its generation because conducting taint analysis
on the replicated program could slow down its execution. The repli-
cation engine buffers the recorded data in the file system, so that the
original program execution can advance normally without having
to wait for the replica.

3.3 Analysis Engine
If the replication engine maintains a replicated program execution
that progresses exactly as the original one, conducting taint anal-
ysis on the replica should expose the same sensitive information
flows as occurred in the original. The analysis engine’s goal is thus
to track which sensitive file bytes taint GUI outputs of the replica
execution (and so of the original execution, to the client computer)
without causing the replica’s execution to diverge from the original.
libdft [29] and other similar tools (e.g., [11, 16]) use dynamic binary
instrumentation to transform the original code blocks to semanti-
cally equivalent ones intertwined with the taint analysis logic. We
don’t take such an approach to implement the analysis engine since
adding additional instructions in the replica would confuse the RCB
counts measured by the replication engine, which might lead to
divergence of the replicated execution due to the non-deterministic
events being inserted at the wrong execution points. As such, the
analysis engine in Snowman takes a different approach, which we
summarize in this section.

3.3.1 Architecture. Snowman defines eachmemory or register byte
as an individual taint unit, to which it associates taint tags dynam-
ically. The instructions executed by the program dictate how the
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taint tags should be propagated. For example, if the program exe-
cutes “mov ebx, eax”, which moves four bytes of data from the eax
register to the ebx register, the analysis engine should move the
taint tags on each byte of the eax register to the corresponding byte
of the ebx register. Strictly speaking, the analysis engine is required
to perform this type of analysis on every instruction executed by
the program.

In Snowman, the analysis engine is implemented as a Linux ker-
nel module, and all taint analysis operations are done in kernel
space, which don’t interfere with the RCB counts of the user-space
replica. For the replica, the analysis engine maintains shadow mem-
ory address spaces and shadow registers that store taint tags for the
corresponding memory and register bytes. Different threads of the
same process share the same shadow memory address space but
have their own shadow registers. A strawman approach to imple-
ment taint analysis is running the replica in single-step mode. After
the execution of each instruction, the CPU traps to kernel mode
and transfers control to the analysis engine. The analysis engine
then decodes the binary instruction and decides how to propagate
taint tags based on the instruction’s opcode (e.g., mov) and operands
(either memory or register operands). This approach works but is
too slow since each instruction triggers a CPU context switch from
user mode to kernel mode.

One source of optimization is the observation that we need to
analyze an instruction only if its operands have taint tags. Leverag-
ing this observation, the analysis engine checks, at the beginning of
each basic block, whether the register operands of the instructions
in the basic block contain taint tags by inspecting the shadow regis-
ters. If any register operand has taint tags, the analysis engine sets
the CPU to single-step mode for this basic block. If not, the analysis
engine sets a breakpoint at the last instruction of the basic block,
which lets the analysis engine seize control and check the next basic
block. This design often induces one context switch per basic block
instead of per instruction, which could be a big performance gain
if only a small percentage of instructions touch tainted registers.

Figuring out whether the memory operands of a basic block
contain taint tags is a more complicated task. Since some memory
operands can be indirectly addressed—e.g., in “mov eax, [ebx]”,
where the address of the memory operand is the value of the ebx
register—we may not know the address of the memory operand
at the beginning of the basic block. As such, we cannot decide
whether the basic block should run in single-step mode by only
inspecting the shadow memory. To solve this problem, the analysis
engine changes each memory page that contains tainted memory
to kernel-only pages by modifying its page table protection bit.
Whenever an instruction in the program accesses those protected
pages, the CPU generates a page fault and transfers control to the
analysis engine. The analysis engine then changes the accessed
page to user-accessible and sets the CPU to single-step mode. After
that, every instruction in that basic block will be analyzed by the
analysis engine.

As shown in Fig. 2, each replicated thread is classified as being
in one of four states by the analysis engine. When the replica
process has not consumed any sensitive data and there are no taint
tags in the shadow memory or shadow registers, all threads of the
replicated process are in Initial state, and the analysis engine does
not set breakpoints at basic-block boundaries. As soon as the replica

Figure 2: State transitions: (1) consume sensitive data; (2)
contain taint tags; (3) finish basic block; (4) no taint tag; (5)
finish basic block; (6) protection page fault

process consumes sensitive data, all threads transition to Undecided.
When a thread is in the Undecided state, the analysis engine checks
whether the register operands in the current basic block contain any
taint tags. If so, the thread is transitioned to the Single-step state and
every instruction in the basic block will be analyzed individually.
After the thread finishes the last instruction of the basic block, it is
transitioned back to the Undecided state. If the register operands
are not tainted, the thread transitions to the Block-step state, and
the analysis engine sets a breakpoint at the last instruction of the
basic block and changes all tainted pages to be kernel-only pages. If
the thread accesses any tainted page, it is transitioned to Single-step.
If the thread finishes the basic block without accessing any tainted
pages, then it is transitioned to Undecided. This state machine
ensures that every possible tainted data flow will be captured and
analyzed by the analysis engine.

3.3.2 Taint Analysis. To monitor the amount of sensitive data
leaked out of the GUI program replica through its graphical outputs,
the analysis engine assigns a different taint tag to each byte of the
sensitive data consumed by the replica. Each shadow memory or
register byte can be attached with a list of different taint tags. When
the graphical output data is sent out of the system, the analysis
engine inspects what taint tags are contained in the output bytes
to track which sensitive bytes have been leaked out.

During taint analysis, the analysis engine applies different anal-
ysis rules on different instructions based on their semantics. The
instructions involving explicit taint propagation can be divided into
four categories: movement instructions, arithmetic instructions,
logical instructions, and transformation instructions. Fig. 3 gives
examples of taint propagation for different types of instructions.

Movement instructions. Movement instructions move data
among memory and registers, or assign immediate values to mem-
ory or registers. By this definition, mov, pop, and push are move-
ment instructions. Bit shift instructions, like shr and shl, are also
categorized as movement instructions since they can be consid-
ered as moving data within a register or memory location. For the
movement instructions, the analysis engine first locates the source
and destination operands, and then replaces the taint tags in the
destination shadow memory or register, byte by byte, with the ones
from the source. If the source operand doesn’t contain any taint
tags or is an immediate value, then the analysis engine clears the
taint tags in the destination.
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Figure 3: Examples of taint propagation

Arithmetic instructions. Arithmetic instructions do arithmetic
operations on the source operands and save the result to the destina-
tion operand. add, sub, mul, div, and inc are common arithmetic
instructions. For unary instructions like inc, we don’t need to
change the taint state of their operand. For binary instructions, the
analysis engine first accumulates all the taint tags from every byte
of the source operands, and then assigns this list of taint tags to
every byte of the destination operand in the shadow memory or
shadow register. There is a special case for sub, or sbb, instruction.
If the source operands of sub are the same, the analysis engine
clears the taint tags of the destination operand. For example in “sub
eax, eax”, the taint tags of eax are removed.

Logical instructions. Logical instructions do bitwise logical opera-
tions onmemory or register operands. Different from the arithmetic
instructions, in a logical instruction, each byte of the destination
operand is affected only by the corresponding bytes of the source
operands, and so the analysis engine assigns only the taint tags
from those source-operand bytes to the corresponding byte in the
destination operand. Special cases here are and and xor. If one
of the source operands in and is the immediate value 0, then the
analysis engine clears the taint tags of the destination operand.
If the source operands of xor are the same, the taint tags of the
destination operand are also cleared.

Transformation instructions. Transformation instructions
change the data representation of an operand from one type to
another. For example, cvtsi2sd changes the data from an integer
representation to a scalar double-precision floating-point represen-
tation and moves the data from the memory or a general register
to a SIMD (single instruction, multiple data) register. Semantically,
every byte of the source operand affects every byte of the destina-
tion operand. So, the analysis engine accumulates all the taint tags
from every byte of the source operand, and then assigns this list of
taint tags to every byte of the destination operand.

Besides propagating taint tags based on instruction semantics, we
also propagate taint tags based on function semantics for selected

functions involving table lookups. In table lookups, the table index
is saved in the index register of the memory operand, and the value
of that memory operand is the corresponding table data. There is
an implicit data flow from the index register to the memory cell.
To reduce false positives and false negatives, we propagate taint
tags directly from the input buffer (containing table indices) to
the output buffer (containing table data) for selected table-lookup
functions. Currently, we have implemented such taint propagation
rules for the pango_shape_full() function from the libpango
library, which translates font indices to unicode characters through
table lookups. More discussions about implicit data flows can be
found in Sec. 5.

3.3.3 Code Caches. The analysis engine decodes each instruction
to figure out 1) its opcode; 2) the names of any register operands;
3) the base register, index register, scale factor, and displacement of
any memory operands; and 4) the value of any immediate operands.
For each basic block, the analysis engine needs to know which
registers are included in the basic block to decide whether they are
tainted, to make decisions about state transitions (as described in
Sec. 3.3). Decoding instructions is expensive, taking around 1000
CPU cycles per instruction. To leverage the space and time locality
of code execution, similar to the CPU instruction cache, we use two
in-memory software caches to speed up taint analysis.

Instruction cache. The instruction cache stores the decoded infor-
mation—opcode, operands, etc.—of instructions. Whenever an in-
struction is executed, the analysis engine checks whether the in-
struction is in the cachewith an index calculated by the instruction’s
virtual memory address. If it is not in the cache, the analysis en-
gine decodes the instruction and caches the results. Otherwise, the
cached information is directly used without decoding the instruc-
tion.

Block cache. We also use a block cache to store the names of
register operands in basic blocks. At the beginning of each basic
block, the analysis engine checks whether the register names are
cached, with an index calculated by the starting address of the
basic block. If it is a cache miss, the analysis engine has to decode
each instruction in the basic block to get the register names. This
decoding step can be accelerated by the instruction cache.

3.4 Implementation
We implemented the replication engine with 61 lines of C++ code
on top of Mozilla RR v5.2.0. We implemented the analysis engine
with 4454 lines of C code as a kernel module in Linux v4.11.12.
We integrated the Zydis1 disassembler into the analysis engine to
decode x86-64 instructions. We will discuss some implementation
details in this section.

Analyzed instructions and functions. We implemented taint
analysis rules for 28 movement instructions, 14 arithmetic instruc-
tions, 12 logical instructions, and 5 transformation instructions.
Those are commonly used instructions including a set of SIMD
(single instruction, multiple data) instructions. Snowman does not
propagate taint tags to the eflags register, and it ignores implicit
data flows caused by control-flow dependencies. Many previous

1https://zydis.re/
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works (e.g., [29, 37]) also ignore the implicit data flow to avoid
over-tainting.

Some library functions are hooked and analyzed by our sys-
tem. The analysis engine hooks open(), close(), and read()
in the glibc library to add taint tags when the program
opens and reads sensitive files. The analysis engine also hooks
XRenderCompositeText() in the xrender library to inspect
whether the rendered text contains taint tags.

Shadow memory and registers. Each memory and register byte
(both for general registers and SIMD registers) has a corresponding
“shadow byte”maintained by the analysis engine. The “shadow byte”
is actually a pointer to the head of a singly linked list of taint tags.
A taint tag is a 32-bit integer, and so taint tags can track up to 4GB
of sensitive data. Snowman uses a linear array to store the register
“shadow bytes” for each thread. The data structure for the memory
“shadow bytes” is a combination of a hash table and a linear array.
Specifically, “shadow bytes” of a memory page are stored in a 4096-
entry array. The location of this page array is saved in a hash table
using the page address as the hash key. This hybrid design strikes
a good balance between using a pure hash table and a pure linear
array, where the former might trigger too many hash collisions
while the latter consumes too much memory.

Taint tag allocation is a time-consuming operation and costs
kernel memory. We implemented a copy-on-write taint propagation
scheme to avoid unnecessary tag allocation. For the movement
instructions, we only copy the pointer of the taint list from the
source “shadow byte” to the destination “shadow byte” and increase
the reference count of that pointer by one. For the arithmetic and
logical instructions, where the source taint tags will be merged
into the destination taint tags, we make a new copy of the taint list
from the destination “shadow byte” if that list is also referenced
elsewhere and then merge the source taint tags.

We also implemented a garbage collection scheme to free memory
used to track already-leaked sensitive bytes. In our system, if a
sensitive byte is leaked, the leakage count is increased by one. Future
leakages of that same byte don’t leak any more information and so
the system doesn’t need to keep tracking it. Therefore, Snowman
maintains a list of already leaked taint tags and periodically invokes
garbage collection to remove those tags from the shadow memory
and shadow registers.

Cache settings.As described in Sec. 3.3.3, we implemented a block
cache and an instruction cache. The block cache is a direct-mapped
cache that has only one element in each cache entry. If a new basic
block is mapped to the same entry as an old one, the old cache
entry will be replaced. Since a program usually executes a relatively
small number of basic blocks, this direct-mapped cache worked well
in practice. Cache collisions are more frequent in the instruction
cache, and so we implemented it as a two-way set associative cache
(two elements in one entry). If a cache collision happens, the least
recently used cache blockwill be replaced. To ensure the correctness
of the cached data, we don’t cache instructions and basic blocks if
they are in a writable and executable page.

Control transfers. The analysis engine needs to take control from
the replica at the right times to do taint analysis (see Fig. 2). To
make the replica run in single-step mode, we set the TF bit in

eflags register. We use the x86 debug register to set breakpoints
at basic block boundaries. We add hooks in the debug trap handler
(do_debug()) and the page fault handler (do_page_fault()) to
transfer control to the analysis engine. Since the replication engine
also sets single-step mode for some of its replay operations, we
maintain an internal state to indicate to the analysis engine to
transfer control to the replication engine instead of directly to the
replica.

4 EVALUATION
In this section, we focus on evaluating Snowman’s performance
by measuring the reaction time of various GUI programs to user
actions. We also evaluate Snowman’s capability of differentiating
the data-leakage patterns of malicious insiders from those of normal
users.

GUI programs. We selected three typical and widely used GUI
programs—a word processor, a spreadsheet, and a code editor—for
our evaluations. The code editor is Gedit2 (v3.18.3), which is pre-
installed in many Linux distributions and has common features
like syntax highlighting and word completion. The word processor
and spreadsheet program are from LibreOffice3 (v5.4), which is an
open-sourced office suite (comparable to Microsoft office) and has
a large user base. In particular, LibreOffice is a fairly complicated
multi-threaded program that has 9 million lines of code (including
C++, Java, and Python components)4. We believe testing Snowman
with LibreOffice would make a comprehensive validation of our
design and implementation.

Environment. In the remote-access scenarios, the GUI programs
ran in a Linux server that installed Snowman with the customized
v4.11.12 kernel. We interacted with the GUI programs using a client
machine running Ubuntu 16.04 with the v4.15.0 kernel. The client
took mouse and keyboard inputs and sent the inputs to the server.
The server did computation, generated graphical outputs, and sent
the outputs to the client. The inputs and outputs were exchanged
through the X11 protocol5, which is the basic component of the
Linux GUI framework, via TCP connections. The client machine
was equipped with a 2-core 3GHz CPU and 4GiB of memory. The
server machine was equipped with a 4-core 3.5GHz CPU and 8GiB
ofmemory. The client and serverwere connected by 1Gbps Ethernet
links in a local area network.

4.1 Performance for benign users
A core indicator of the GUI program’s performance is its reaction
time to user actions. To accurately measure the reaction time, we
used Wireshark6 to monitor the X11 packets passed through the
TCP socket in the client machine. The reaction time was calculated
as the difference between the departure time of the first user input
packet and the arrival time of the last graphical output packet
triggered by the user action.

We measured the reaction time of various actions performed
on LibreOffice Writer (the word processor), LibreOffice Calc (the

2https://wiki.gnome.org/Apps/Gedit
3https://www.libreoffice.org/
4https://www.openhub.net/p/libreoffice/analyses/latest/languages_summary
5https://www.x.org/
6https://www.wireshark.org/
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Figure 4: Reaction time for common user actions when running the programs locally 1) in the client machine, remotely 2) in
the server machine without instrumentation, 3) monitored by Snowman, 4) by the Pin “null tool”, or 5) by the Pin “taint tool”

spreadsheet), and Gedit (the code editor). Each measurement was
repeated 10 times. The actions we tested are the following.

Start the program. Each program was started by entering a com-
mand in the terminal. The reaction time was measured as the dura-
tion between the command key press and the display of the first
window of the program on the screen.

Open a file.We opened a 46KiB text file in Writer, a 25KiB spread-
sheet in Calc, and a 88KiB source code file in Gedit. The reaction
time was measured as the duration between the open button click
and the rendering of the full text on the screen.

Close the program. We exited each program by closing its first
window. The reaction time was measured as the duration between
the close button click and the release of all graphical resources by
the program.

Scroll down. For each program, we clicked the scroll bar once to
scroll down the window by one page. The reaction time was mea-
sured as the duration between the scroll bar click and the rendering
of the new text on the screen.

Search a string. We searched a string in each program. The reac-
tion time was measured as the duration between the search button
click and the string being located on the screen.

Paste text. We pasted a 3984-character sentence in Writer, a 47-
by-14 spreadsheet table in Calc, and a 13-line source code snippet
in Gedit. The reaction time was measured as the duration between

the paste button click and the rendering of the pasted text on the
screen.

These actions were tested in five settings. In the first setting,
the GUI program ran locally in the client machine, which is the
normal setting without data protection from remote-only access. To
assist reaction-time measurement, the X11 packets were transmit-
ted through local TCP sockets. In the other four settings, the GUI
program ran on the server machine, and the user interacted with
the program through the client machine. Among these four settings,
the first one ran the program natively without instrumentation;
the second one ran the program under the protection of Snowman;
the third one ran the program under the “null tool” of Pin [32]
(v3.6); and the last one ran the program under the “taint tool” of Pin
(v3.6) with the bytes read from the opened file marked as tainted.
The Pin “null tool” does the minimal amount of instrumentation
to maintain supervised execution of the program. The Pin “taint
tool” conducts multi-label taint tracking and employs the same set
of taint analysis rules as Snowman. It was implemented by us and
was used to debug and validate the implementation of Snowman’s
taint analysis engine.

Fig. 4 shows the average reaction time of various actions in
different settings, where the error bar represents the standard de-
viation. Overall, the reaction time of the actions in Snowman was
0.92× to 2.41× the reaction time of those actions in the remote-only
setting without any instrumentation. Among these actions, open-
ing a file, starting and closing the program have relatively large
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overhead (1.16× to 2.41×) because Snowman needs to record the
non-deterministic inputs and take extra steps to set up and tear
down the environment for recording. However, we don’t expect
this would have significant impact on user experience since these
actions are not frequently triggered by the user in typical workloads.
The reaction time of other actions in Snowman are comparable to
those in the remote-only setting (0.92× to 1.19×).

Additionally, Snowman performs better than the Pin “null tool”
and “taint tool” in all tests. Compared with the remote-only setting
without any instrumentation, the reaction time overhead is 1.05× to
23.07× in the Pin “null tool” and 4.3× to 133.1× in the Pin “taint tool”.
The actions triggering taint propagation (opening a file, scrolling
down, searching a string, and pasting text) have huge overhead in
the Pin “taint tool”. We don’t claim this multi-label taint tracking
tool implemented by us is the best possible implementation. But
we expect other similar tools would have similarly considerable
overhead because the taint analysis routines are inlined with the
normal program code by the Pin instrumentation. Besides, consid-
ering that the “null tool” doesn’t implement any instrumentation
for taint analysis, which represents a lower bound for taint analysis
approaches implemented with Pin, Snowman should perform better
than any Pin-based taint analysis tools.

4.2 Data exfiltration detection
Snowman aims to detect data exfiltration by monitoring the amount
of sensitive data leaked to the user. Here we describe our evaluation
of its efficacy in this regard, using the same applications as used for
the performance evaluation for benign users in Sec. 4.1. We chose a
primitive demonstration of the detection capabilities of Snowman:
we simulated a “typical” normal user session and a malicious user
session for each GUI program, and then showed that the leakage
profiles of the two sessions as observed by Snowman could be statis-
tically differentiated with overwhelming ease (and the speed with
which this differentiation could occur, etc.). We designed the “nor-
mal” sessions based primarily on their representation in publicly
available resources (see below), so that readers can easily assess the
nature of activities in each, should they so choose. Moreover, these
sessions were performed without undue delay or extra “thinking
time,” so as to simulate a more rapid leakage of data—and so, pre-
sumably, yielding a reasonably conservative evaluation. We discuss
the settings and results of this evaluation in this section.

4.2.1 Settings. In our evaluations, the GUI program ran in the
remote server and we interacted with the program in the client ma-
chine. Snowmanmaintained a replica of the program and conducted
taint analysis on the replica to measure leakage.

LibreOfficeWriter sessions. In the normal session, we formatted
an ebook document by following the instructions from the Kindle
ebook formatting guide7. The document we used was the first three
chapters of the Python tutorial8 with all formatting removed. We
started the session by opening the document. Following the guide,
we restored the format of the original tutorial by changing fonts
of the section titles, inserting hyperlinks, adding footnotes and
page numbers, and creating a table of contents. In the malicious
7https://kdp.amazon.com/en_US/help/topic/G200645680 (This guide is based on Mi-
crosoft Word but we can find the same functionalities in LibreOffice Writer.)
8https://docs.python.org/3/tutorial/

session, we opened the same document, quickly scrolled down the
document, and physically took pictures of all the pages.

LibreOffice Calc sessions. In the normal session, we did calcula-
tions on a spreadsheet containing employment and salary informa-
tion. The spreadsheet was created with an online template9 and
filled with synthetic data (100 rows and 36 columns). Throughout
the session, we calculated the number of employees taking more
than two days off, the average medical expenses, and the total basic
salary by using the built-in functions fromCalc. In themalicious ses-
sion, we quickly scanned the whole spreadsheet and took pictures
of all the rows and columns.

Gedit sessions. In the normal session, we edited a C file to finish
an assignment from the MIT Operating System Engineering class.
We implemented the env_init() and env_setup_vm() functions
by editing the env.c file, as required by exercise 2 of lab 3.10 We
also opened the env.h file to reference the related data structures.
To best enable repeatability, we simply followed the solution from a
github repository.11 In the malicious session, we opened the env.c
and init.c files, and took pictures of all the file contents.

4.2.2 Leakage detection. Snowman records various events of the
monitored GUI program as described in Sec. 3.2, as well as the
timestamp of each event. So, when Snowman detects new leakage
via its taint-tracking in the replica, it can report the time of that
leakage event from the original execution.

Fig. 5 reports the total leakage from the sensitive files over time,
as detected by Snowman, in the normal and malicious session of
each program. The x-axis is the time of the original user session.
The y-axis is the total leakage. As can be seen there, in all three
malicious sessions, the sensitive bytes were leaked out within one
minute. In the normal sessions, the leakage occurred at a slower
speed. Additionally, the normal sessions of the Calc and Gedit
programs leaked only a part of the file contents.

We applied a statistical analysis to test whether the malicious
session and the normal session can be easily differentiated. We
used the logrank test [10], which is usually applied to compare
the survival experience of two groups of patients. We treated the
new leakage of a sensitive byte as analogous to the death event of
a patient in this analysis. With the collected data, we calculated
the time intervals between leakages and so the frequencies of data
leakages.We subjected the time intervals from themalicious session
and the normal session of each program to the logrank test. The
p-value calculated from the Writer, Calc, and Gedit sessions is
0, 9.925 × 10−262, and 9.157 × 10−168, respectively. Thus, for each
program, we can safely reject the null hypothesis that the leakage
of the malicious session and the normal session are the same.

4.2.3 Detection delay. Although the taint analysis conducted by
Snowman doesn’t affect the program execution with which the user
interacts, it slows down the execution of the replica and adds delay
to the detection of the leakage event.

Fig. 6 plots the time at which the replica detected each new leak-
age, as a function of the time that the leakage actually occurred. In

9https://exceldatapro.com/download-salary-sheet-template/
10https://pdos.csail.mit.edu/6.828/2018/labs/lab3/
11https://github.com/Babtsov/jos/tree/lab3
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(a) Writer (b) Calc (c) Gedit

Figure 5: The amount of leakage in normal and malicious sessions, as a function of time

(a) Writer (b) Calc (c) Gedit

Figure 6: The time at which the Snowman replica detected each new leakage, as a function of the time (in the user-facing
execution) that the leakage originally occurred

the normal sessions, the Snowman replica detected the last leak-
age event with a lag of 6.9×, 7.8×, and 4.9× for Writer, Calc, and
Gedit, respectively, behind when that leakage event occurred. In
the malicious sessions, detection of the last leakage event lagged
by 38.2×, 25.1×, and 11.5× for Writer, Calc, and Gedit, respectively.
Gedit has the smallest lag, presumably because it has simpler code
logic and takes less CPU cycles to process user requests. For all
three programs, the malicious sessions lag more than normal ones,
since the malicious user sent requests to the program at a higher
frequency, leaving the replica fewer idle cycles to catch up.

We also want to figure out how quickly Snowman can differ-
entiate the malicious session from the normal one. We adopted
the following procedure to answer that question. In the timeline
of the replica’s execution, the leakage events from the malicious
session, as detected by Snowman, were added to one dataset, and
the leakage events from the normal session were added to another.
These two datasets were updated at the end of each second of the
replica’s execution time. We started to apply the logrank test (the
same as described in Sec. 4.2.2) on the updated datasets after both
datasets had more than 1000 leakage events. We stopped the proce-
dure when the calculated p-value dropped below 0.05. The time at
which we stopped is reported as the earliest time Snowman could

detect the malicious session (using the normal session as a “typical”
baseline). The earliest detection times were 1522s, 574s, and 276s
for Writer, Calc, and Gedit, respectively.

5 DISCUSSION

Taint analysis accuracy. Currently, we have implemented taint
analysis rules for only a subset of x86-64 instructions in Snowman.
This subset includes every instruction that explicitly propagates
taint tags during the execution of the three tested programs (Libre-
Office Writer, LibreOffice Calc, and Gedit). To capture this subset
of instructions, we added an assertion in the taint analysis engine,
which gives an alert if an executed instruction contains tainted
operands but no taint analysis rule was implemented for that in-
struction. For other programs, we can take the same approach to
select instructions for taint analysis.

Taint propagations caused by implicit data flows are mostly
ignored by Snowman. Implicit data flows can exist in branch in-
structions where the branch condition variable decides which value
will be saved to a given variable. There are also implicit data flows
in pointer dereferences. In some cases, the data value in a memory
location is decided by the value of the memory address, such as
table lookups. Ignoring these implicit data flows can cause false
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negatives in the leakage detection. However, enabling taint analy-
sis for implicit data flows leads to false positives and taint explo-
sion [45], and for this reason has been excluded in many prior tools
(e.g., [29, 37, 43]).

To reduce false negatives caused by table lookups, we manu-
ally identified functions that might propagate taint tags through
table lookups and implemented taint analysis rules based on these
functions’ semantics (see Sec. 3.3.2). Although we only hooked and
analyzed the pango_shape_full() function in our current imple-
mentation, other functions can be analyzed in the same way as
soon as they are identified.

Replication delay. The replica has to trap into the kernel to be
analyzed by the taint analysis engine. This trap happens at least
once per basic block and can increase to once per instruction if
the basic block contains tainted operands. The frequent context
switches between the user and kernel modes add significant over-
head. We chose to implement the taint analysis engine in the kernel
to avoid adding extra instructions into the replica. The benefit of
doing so is that the replication engine can then determine when to
inject the asynchronous signals and scheduling events by using the
CPU retired conditional branch counter to measure the progress
of the replica. In theory it should be possible to implement taint
analysis in user space by instrumenting the binary and adjusting
the measurements of the replica’s execution accordingly.

Due to the amplified execution time of the replica, the malicious
user might intentionally trigger expensive operations to increase
the delay by which replica processing lags behind the original,
in order to “buy time” for copying data. To detect such attacks,
we could build a model of normal lag, i.e., a profile based on the
lag during normal user sessions. If the lag during a user session
deviates substantially from that profile, Snowman can raise an
alert of potential malicious behavior, or alternatively slow down
the user-facing execution. It is also possible to run the replica in
a machine with higher CPU clock rate than the one where the
original execution runs, so the replica can better keep up with the
original execution.

Quick leakage estimation. Snowman’s accurate leakage tracking
could be augmented with a much quicker method of estimating
the leakage based on examining the GUI traffic between the user-
facing execution and the thin client. Ideally this estimator would
quickly approximate the leakage with good recall and reasonable
precision, to be corroborated (or corrected) by the replica when its
analysis is complete. In doing so, Snowman could be made even
more responsive to data exfiltration attempts. However, to tolerate
false alarms by the estimator, a response to an estimator-based
alarm might be to only slow down the user-facing execution, for
example, until the taint-tracking replica catches up.

From differentiation to anomaly detection. We showed in
Sec. 4.2 that it was trivial to statistically distinguish our own ses-
sions of normal activity from ones in which we simply paged
through files and photographed them, based on the leakage patterns
determined by Snowman. While these tests provide strong evidence
that detecting theft (as long as it is sufficiently aggressive) on the
basis of a leakage profile is possible, the dearth of datasets character-
izing the leakage patterns of either normal or theft-oriented usage

of the applications tested there renders it impossible to properly
evaluate an anomaly detection methodology based on Snowman.
Moreover, since a data-leakage profile during normal use might be
highly dependent on the expertise of the user and the type of file
being accessed, there may not be a one-size-fits-all detector; rather,
leakage models created per user, per file, or at least per organization
might be more appropriate. Of course, a purely volume-based detec-
tor could presumably fail to detect data exfiltration performed very
slowly, at a speed similar to normal usage. For such cases, analyzing
the exact order in which bytes are leaked—which Snowman also
provides—might be necessary. Still, we believe that even our primi-
tive studies already provide a strong basis to motivate the further
study of GUI leakage measurement as enabled by Snowman.

6 CONCLUSION
In this paper we presented Snowman, which aims to deter data theft
by malicious insiders through strong data isolation and fine-grained
data monitoring. In Snowman, a user is restricted to accessing sen-
sitive data only remotely on a trusted server, via the GUI presented
by the application to a thin client. In the server, Snowman detects
data theft by monitoring the number of sensitive bytes leaked to
the user. Maintaining good performance for normal usage of the
monitored program while accurately monitoring for data theft is
challenging. Snowman addresses this problem by replicating the
execution of the program alongside its original execution and con-
ducting multi-label taint analysis on the replicated execution. Our
implementation of Snowman works on unmodified Linux binaries
and off-the-shelf hardware without assuming that the replicated
application is race-free (unlike some previous replication solutions).
Our evaluations show that Snowman adds only moderate overhead
for common user actions and, thanks to several novel optimizations,
is far more efficient than, e.g., Pin-based taint analysis solutions.
We also demonstrated that the data-leakage patterns of sufficiently
aggressive malicious insiders can be leveraged to easily distinguish
them from normal ones.
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