Mitigating Side Channels Using Statistical Privacy Mechanisms
Qiuyu Xiao, Michael Reiter, Yinqian Zhang
qiuyu@cs.unc.edu

Goals
Mitigate side-channels in mobile and cloud computing environment at the same time maintain the utility of the related applications.

Implementation
• The prototype system is implemented in Ubuntu 14.04 with kernel version 3.11.
• d*-private mechanism is implemented as a kernel routine.
• Invariant reestablishment functionality is implemented in a user-space daemon.

Results
Security evaluation:
• Infer the web page (from a set of ten web pages) visited by the browser based on its data resident size.
• Without protection, the attacking accuracy is 0.915.

Utility evaluation:
• Relative error measured for the data resident size when \(\epsilon \) is set to 0.01.
• The relative error is less than 10% most of the time.

Approach
First apply the d-private mechanism to perturb the data, and then reestablish the invariants to maintain the utility of the data before it is outputted by the proc filesystem.

d-private
• As the attacker observing the obfuscated data, it’s hard to distinguish whether the original data is introduced by the sensitive action or the insensitive one.
• \(M \): d-private mechanism, \(d^* \): distance metric.
\[
P(M(X) = \tilde{X}) \leq \exp(\epsilon \times d^*(X, X')) \times P(M(X') = \tilde{X})
\]

X: memory stats for google.com
\(X' \): memory stats for cnn.com

Choose a small \(\epsilon \) make X and X' fall within the indistinguishable range r.

Invariants reestablishment
• Some application depends on the invariants.
• Invariant reestablishment does not erode the privacy achieved by the d-private mechanism.

Website Fingerprinting Attack from Storage Side-channel
• Storage side-channel: attacker can infer sensitive information from the application run-time data from proc filesystem, e.g., fingerprinting website.
• Timing side-channel: the private key of the victim VM can be extracted by the attacker VM through the cache timing information.

Table:

<table>
<thead>
<tr>
<th>One-field Invariants</th>
<th>Multiple-field Invariants</th>
</tr>
</thead>
<tbody>
<tr>
<td>totalVM (\geq 0)</td>
<td>totalVM (\geq) sharedVM</td>
</tr>
<tr>
<td>utime[i] (\geq) utime[i-1]</td>
<td>hiwater(\geq) filePages</td>
</tr>
<tr>
<td>starttime[i] = starttime[i-1]</td>
<td>exec(\geq) filePages + swapEnts</td>
</tr>
</tbody>
</table>

One-field Invariants
<table>
<thead>
<tr>
<th>(\epsilon)</th>
<th>Attacking Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 to 0.10</td>
<td>0.88 to 0.10</td>
</tr>
</tbody>
</table>

Multiple-field Invariants
<table>
<thead>
<tr>
<th>Query</th>
<th>Relative Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.05 to 0.10</td>
</tr>
</tbody>
</table>