Encrypting OVN tunnels with IPsec

Qiuyu Xiao
qiuyu.xiao.qyx@gmail.com
The University of North Carolina at Chapel Hill
Motivations

Why do we need encryption?

• VMs compute and communicate sensitive data
 - Financial data
 - Health records

• Physical network devices (e.g., router, switch) cannot be trusted or might be compromised
 - Traffic across datacenters
 - Router misconfiguration
 - Attackers breaking into internal network
 - Phishing or social engineering attacks on administrators
Motivations

IPsec configuration is complicated
• Many configuration fields
• Various cryptographic algorithms and parameters
• Different configuration interfaces from different IKE daemons
• Verifying security configuration is hard
OVS/OVN IPsec

Offer an easy-to-use interface to configure IPsec encryption for tunnel traffic

- Confidentiality
- Integrity
- Authenticity
IPsec in Linux

IKE daemon

User space

Kernel

security policy
security association

IPsec kernel stack

IKE protocol

ESP/AH protocol
IPsec in Linux

IKE daemon
• Authentication
• Negotiates cryptographic algorithms
• Generates keying material
IPsec in Linux

IKE daemon
• Authentication
• Negotiates cryptographic algorithms
• Generates keying material
• Installs security policy and security association
IPsec in Linux

IKE daemon
- Authentication
- Negotiates cryptographic algorithms
- Generates keying material
- Installs security policy and security association

Which traffic to protect
IPsec in Linux

IKE daemon
• Authentication
• Negotiates cryptographic algorithms
• Generates keying material
• Installs security policy and security association

How to protect the selected traffic

IKE daemon
IPsec kernel stack

IKE protocol
ESP/AH protocol

User space
Kernel

security policy
security association
IPsec in Linux

IPsec kernel stack
• Encryption and decryption
• Checks integrity and authenticity
OVS IPsec Tunnel
OVS IPsec Tunnel

Configuring IPsec tunnel via ovsdb
• Using pre-shared key

For example:

```
$ ovs-vsctl set interface tun type=geneve \
   options:remote_ip=10.33.79.149 \
   options:psk=swordfish
```
OVS IPsec Tunnel

Configuring IPsec tunnel via ovsdb
• Using self-signed certificate

For example:

$ ovs-vsctl set Open_vSwitch . \
 other_config:certificate=/etc/ipsec.d/certs/vm1-cert.pem
 other_config:private_key=/etc/ipsec.d/certs/vm1-privkey.pem
$ ovs-vsctl set interface tun type=geneve \
 options:remote_ip=10.33.79.149 \
 options:remote_cert=/etc/ipsec.d/certs/vm2-cert.pem
OVS IPsec Tunnel

Configuring IPsec tunnel via ovsdb
- Using CA-signed certificate

For example:

```bash
$ ovs-vsctl set Open_vSwitch .
  other_config:certificate=/etc/ipsec.d/certs/vm1-cert.pem
  other_config:private_key=/etc/ipsec.d/certs/vm1-privkey.pem
  other_config:ca_cert=/etc/ipsec.d/cacerts/cacert.pem
$ ovs-vsctl set interface tun type=geneve \
  options:remote_ip=10.33.79.149 \
  options:remote_name=vm2
```
OVS IPsec Tunnel

Establishing IPsec tunnel
- OVS IPsec daemon configures IKE daemon
Establishing IPsec tunnel
• OVS IPsec daemon configures IKE daemon
• IKE daemon sets up security policy and security association

For example (geneve tunnel):

```
root@ubuntu:/debias/4.19# ip xfrm policy show
src 10.33.78.172/32 dst 10.33.79.149/32 proto udp sport 6081
dir in priority 5888
tmpl src 0.0.0.0 dst 0.0.0.0
  proto esp reqlid 2 mode transport
src 10.33.79.149/32 dst 10.33.78.172/32 proto udp dport 6081
dir out priority 5888
tmpl src 0.0.0.0 dst 0.0.0.0
  proto esp reqlid 2 mode transport
src 10.33.78.172/32 dst 10.33.79.149/32 proto udp dport 6081
dir in priority 5888
tmpl src 0.0.0.0 dst 0.0.0.0
  proto esp reqlid 1 mode transport
src 10.33.79.149/32 dst 10.33.78.172/32 proto udp sport 6081
dir out priority 5888
tmpl src 0.0.0.0 dst 0.0.0.0
  proto esp reqlid 1 mode transport
```
OVS IPsec Tunnel

IPsec kernel stack
- Encryption and decryption
- Checks integrity and authenticity

Diagram:
- ovsdb → OVS IPsec daemon → IKE daemon
- ovs datapath → IPsec kernel stack

User space
Kernel
OVN IPsec
OVN IPsec

- In each hypervisor, configure ovsdb to use CA-signed certificate for authentication
- Enable IPsec by configuring northbound database

For example:

```
$ ovn-nbctl set nb_global.ipsec=true
```
IPsec Evaluation

- Environment: StrongSwan 5.3.5, Linux 4.4.0, Intel Xeon 2 GHz, 10 Gbps NIC
- iperf generates TCP stream (window size: 85KB), which is encrypted in a single core

![Throughput (Mbps) and CPU Usage diagrams](image)
Current Status

- Compatible with StrongSwan and LibreSwan IKE daemon
- Packages for Ubuntu and Fedora
- Tutorials on using OVS/OVN IPsec
- Need to use OVS out-of-tree kernel module
Possible Extensions

More flexible tunnel encryption policies:
• Only encrypting tunnel traffic between certain hypervisors
• Only encrypting tunnel traffic from certain logical network
Q&A